

RDBMS Concepts and Oracle

Course Designer and Acquisition Editor

Centre for Information Technology and Engineering

Manonmaniam Sundaranar University

Tirunelveli

RDBMS Concepts and
 Oracle

CONTENTS

Lecture 1 1
 RDBMS Definitions
 Basic Concepts
 Data
 Database
 Database User
 Database System
 Database Modeling

Lecture 2 15

 Entity Relationship Model
 Entity
 Attributes
 Relationships
 Mapping Cardinalities

Lecture 3 30

 RDBMS Concepts
 Object based data models
 OLTP
 DSS
 Transaction
 Large Database Management Control
 Data Concurrency
 Data Consistency
 Data Integrity

Lecture 4 38

 Normalization
 Redundancy and Inconsistent Dependency
 First Normal Form
 Second Normal Form
 Third Normal Form
 Denormalization

Lecture 5 51

 Codd’s Rule
 Data Integrity
 Keys

Lecture 6 61
 Client Server Architecture
 Clients
 Servers
 Types of Servers
 Multithreaded Server Architecture
 Advantages of Client/Server Computing

Lecture 7 77
 Front Ends
 Open Clients
 ODBC Support
 Character Based Clients
 GUI Based Clients

Lecture 8 83
 Generation of Languages
 SQL
 SQL command Classification
 Data Types
 Create, View, Manipulate Data

Lecture 9 115
 Data Integrity
 Adding Constraints

Lecture 10 134

 Expressions
 Scalar Functions
 Aggregate Functions

Lecture 11 179

 Joins Tables
 Sub Queries
 Correlated sub Query
 Inline Query
 Pseudo Columns

Lecture 12 198

 Privileges
 Database Objects
 Synonyms
 Sequences
 Understanding Database Structure
 Access Methodologies

Lecture 13 224
 Introduction to PL/SQL
 PL/SQL architecture
 Declares Variables
 Control Structures
 Iteration Control

Lecture 14 249

 Understanding Cursors
 Types of Cursors
 Cursor Variables for using Constrained Cursors

Lecture 15 276

 Exceptions
 Errors
 User – Defined Exceptions
 Unloaded Exceptions

Lecture 16 295

 Introduction to Subprograms
 Procedures to Parameters
 Functions of Notations
 Procedures Vs Functions

Lecture 17 311

 Packages
 Specification
 Package body
 Overloading Package

Lecture 18 330

 Triggers
 Creating Triggers
 Cascading Triggers
 Mutating and Constraining Tables
 Enabling and Disabling Triggers

Lecture 19 348
 Why objects?
 Oops and Object Concepts
 Oracle Supported Data Types
 Collection Types
 Object Views
 Member Functions
 Using Order Method

Lecture 20 380
 Introduction to DBA
 Open Cursor
 Execute
 Oracle DBA

Lecture 21 386
 Java Strategies
 JDBC
 Java with SQL
 Java Virtual Machine
 Java Stored Procedures

Lecture 22 398

 Java Strategies
 JDBC
 Java with SQL
 Java Virtual Machine
 Java Stored Procedures

Lecture 23 413
 Introduction to Forms
 Using forms Builder
 Form Wizards
 Creation of Forms

Lecture 24 433
 Property Class
 Visual Attributes
 Library
 Alerts
 Object Libraries

 Editors

Lecture 25 454
 Master Detail Form
 Creation of Master Detail Form
 Triggers

 Validations

Lecture 26 475
 Working with LOV objects
 Using Multiple Canvases
 Types of Canvas
 Object Groups
 Parameters

 Record Groups

Lecture 27 500

 Stacked Canvas
 Tab Canvas
 Horizontal Toolbar Canvas

 List Item

Lecture 28 516
 Using Menu
 Saving Compiling and Attaching

 Checked, Enabled Menu Items

Lecture 29 523
 Introduction to Reports
 Types of Reports
 Tabular Reports
 Break Report
 Master Detail Report
 Matrix Report

 Report Triggers

Lecture 30 550
 Introduction to Graphics
 Using graphics Builder

 Creating a Graph

Syllabus 561

RDBMS Concepts and Oracle8i

1

Lecture 1

RDBMS Fundamentals

Objectives

After completing this lesson, you should be able to do the following

 Discuss the theoretical and physical aspects of a relational database

 Describe the Oracle implementation of the RDBMS and ORDBMS

 Describe new features of Oracle8I

 Describe about Database and Database model

 Describe the use and user of database

RDBMS Concepts and Oracle8i

2

Coverage Plan

Lecture–1

1.1 Snap shot

1.2 RDBMS definitions

1.3 Basic concepts

1.4 Data

1.5 Database

1.6 Database user

1.7 Database system

1.8 Database modeling

1.9 Short summary

1.10 Brain Storm

RDBMS Concepts and Oracle8i

3

1.1 Snap Shot

In this lesson, you will gain an understanding of the relational database management
system(RDBMS) and the object relational database management system(ORDBMS). You will
also be introduced to the following: A database management system (DBMS) is a collection of
programs that enables users to create and maintain a database. The DBMS is hence a general-
purpose software system that facilitates the processes of defining, constructing, and
manipulating databases for various applications.

1.2 RDBMS Definitions

1.2.1. Database Management System

In this section, we shall discuss about database and related concepts. A database is a static
storage area and the system that works on it is called the Database Management System
(DBMS). The user interacts with DBMS and not with the database. The primary purpose of a
DBMS is to provide an effective way of storing and retrieving the data faster for both single-
user and multi-user systems.

 Database Management largely involves:

• Storage of Data
• Manipulation of the data
• Access restriction for unauthorized users.

Functions of a DBMS

Some of the functions of DBMS are:

 Database Definition – how data is to be stored and organized.
 Database Creation – Storing data in a defined database
 Data Retrieval – Querying and reporting
 Updating – changing the contents of the database.
 Programming user facilities for system development.
 Database revision and restructuring
 Database Integrity control
 Performance monitoring.

Characteristics Of Dbms

 Control of data redundancy
 Sharing data
 Maintenance of integrity
 Support for transaction control and recovery
 Data independence
 Availability of productivity tools
 Security
 Processing speeds
 Hardware independence

RDBMS Concepts and Oracle8i

4

1.2.2 Relational Database Management Systems (RDBMS)

It is the most popular model and solves most of the problems that existed in the previous
models. A simple definition of RDBMS is:

“It is a database management system where the data are organized as tables of data values
and all the operations on the data work on the these tables”

1.2.3 ORACLE8: OBJECT Relational Database Management system

• User-defined data types and objects

• Fully compatible with relational database

• Support of multimedia and large objects
• High-quality data baser server features

Oracle8 is the first object-capable database developed by Oracle. It extends the data modeling
capabilities of Oracle 7 to support a new object relational data base model. Oracle 8 provides
a new engine that brings object oriented programming, complex data types, complex business
objects, and full compatibility with the relational world.

Oracle 8 extends Oracle 7 in many ways. It includes several features for improved
performance and functionality of online transaction processing (OLTP) applications, such as
better sharing of runtime data structures, larger buffer caches, and deferrable constraints.
Data warehouse application will benefit from enhancements such as parallel execution of
insert, update, and delete operations, partitioning, and parallel-aware query optimization.
Operating within the Network Computing Architecture(NCA) framework, Oracle 8 supports
client-server and Web-based applications that are distributed and multi-tiered.

Oracle 8 can scale tens of thousands of concurrent users, support up to 512 petabytes, and can
handle any type of data, including text, spatial, image, sound, video, and time series as well
as traditional structured data.

1.2.4 Oracle8i: Internet Platform Database for internet computing features

• Advanced tools to manage all types of data on Web sites.

• More than a simple relational data store: iFS .
• Integrated Java VM in the server: Jserver.

• Better performance, stronger security, language improvement.

• Greater integration with Windows NT environment: AppWizard.

Oracle8i the database for Internet computing, provides advanced tools to mange all types of
data in Web sites.

It is much more than a simple relational data store. The Internet File System combines the
power of Oracle8i with the ease of use of a file system. It allows users to move all of their
data into the Oracle8i database, where it can be stored and managed more efficiently. End
users can easily access files and folders in Oracle iFS via a variety of protocols, such as HTML,
FTP, and IMAP4, giving them universal access to their data.

RDBMS Concepts and Oracle8i

Oracle 8i inter Media allows users to web enable their multi media data including image, text,
audio, and video data. Oracle 8i includes a robust, integrated, and scalable Java Virtual
Machine within the server (Jserver), thus supporting Java in all tiers of applications. This
eliminates the necessity of recompiling or modifying Java code when it is to be deployed on a
different tier.

With the newly introduced resource management, the DBA can choose the best methods to fit
an application’s profile and workload. The extended features of parallel servers and
networking improves case of system administration. The extended functionality of advanced
replication results in better performance and improved security. Significant new
functionalities have been added to languages.

Oracle 8i provides full, native integration with Microsoft Transaction Server (MTS) in the
Windows NT environment. Application development is simplified by the Oracle Application
Wizard (AppWizard) for Visual Studio, which provides developers with a GUI tool for
creating a Visual C ++ Visual Interdev, or Visual Basic applications accessing data in an
Oracle database.

•

Clients Any mail
Any Browser Client Any FTP client

System
m

anagem
ent

D
evelopm

enttools

SQL

PL/
SQL

Java

Internet Applications

Databases Application Servers

Network services

Business logic
and data

Presentation and
business logic

Oracle Internet Platform

Oracle offers a comprehensive high performance Internet platform for e-commerce and data
warehousing. This integrated platform includes everything needed to develop, deploy, and
manage Internet applications. The Oracle Internet Platform is built on three core pieces:

• Browser-based clients to process presentation.
• Application servers to execute business logic and serve presentation logic to browser

based clients.
• Data bases to execute data baser intensive business logic and serve data

Oracle offers a wide variety of the most advanced graphical user interface driven
development tools to build business applications, as well as a large suite of software
applications, for many areas of business and industry. Stored procedures, function, and
packages can be written by using SQL .

5

RDBMS Concepts and Oracle8i

6

1.2.5 Relational Data Structure Definitions

Table: A table is the organizing principle in a relational database where data are

arranged in a rectangular fashion. Each table in a database will have a unique
name, which can identify the contents.

Relation: A relation is the term for defining the association between the tables.

Tuple: A row or record in a table is called Tuple.

Attribute: Each column in a table has a column name and every column must have a

different name. The column or field is called an Attribute of a table.

Domain: Domain can be defined as a set of values from where the attributes get their

actual values.

1.3 Basic Concepts

Relational Model

The principles of the relational model were first outlined by Dr.E.F.Codd in a June 1970 paper
called “A Relational Model of Data for Large Shared Data Banks.” In this paper, Dr. Codd
proposed the relational model for database systems.

The more popular models used at that time were hierarchical and network, or even simple
flat file data structures. Relational database management systems (RDBMS) soon became very
popular, especially for their ease of use and flexibility in structure. In addition, a number of
innovative vendors, such as SQL, supplemented RDBMS with a suite of powerful application
development and user products, providing a total solution.

Components of the Relational Model

o Collections of objects or relations that store the data

o A set of operators that can act on the relations to produce other relations

o Data integrity for accuracy and consistency

Definition of Relational Database

A relational database uses relations or two-dimensional tables to store information. For
example, you might want to store information about all the employees in your company. In a
relational database, you create several tables to store different pieces of information about
your employees, such as an employee table, a department table, and a salary table.

Properties of a Relational Database

In a relational database, you do not specify the access route to the tables, and you do not need
to know how the data is arranged physically.

RDBMS Concepts and Oracle8i

To access the database, you execute a structured query language (SQL) statement, which is
the American National Standards Institute (ANSI) standard language for operating upon
relational databases. The language contains a large set of operators for partitioning and
combining relations. The database can be modified by using the SQL statements.

Communicating With A RDBMS Using SQL

7

SQL> SELECT loc
2 FROM dept;

LOC

NEWYORK
DALLAS
CHICAGO

Database

Structured Query Language

SQL allows you to communicate with the server and has the following advantages:
o Efficient
o Easy to learn and use
o Functionally complete (SQL allows you to define, retrieve, and manipulate data in the

tables.)

Relational Database Management System

Server

User tables
Data dictionary

Using its features, you can store and manage data with all the advantages of a relational
structure plus PL/SQL, an engine that provides you with the ability to store and execute

RDBMS Concepts and Oracle8i

8

program units. The server offers the options of retrieving data based on optimization
techniques. It includes consistency and protection of data through locking mechanisms.

In this client-server environment, a wide range of computing resources can be used.

1.4 Data

Data is any information in bits and pieces. Customer names, an employee number, amount of
sales, number of centuries scored by Tendulkar are examples of data. To operate with the
data, the data needs to be related so that it is easier to search and locate them. Here, data
becomes meaningful only if it is related. To illustrate this better let us consider an Office
where essential information needs to be stored as shown below:

 Office Files Manager Typist Memo Salary Bonus Sales

Data Models

Models are a cornerstone of design. Engineers build a model of a car to work out any details
before putting it into production. In the same manner, system designers develop models to
explore ideas and improve the understanding of the database design.

Purpose of Models

Models help communicate the concepts in people’s minds. They can be used to do the
following:

o Communicate
o Categorize
o Describe
o Specify
o Investigate
o Evolve
o Analyze
o Imitate

1.5 Database

A database is a collection of interrelated data that are stored in controllable and retrievable
form. The collection represents static information of a group of related data that collectively
makes sense. In this way, the information can be stored and retrieved quickly with ease using
databases.

Databases are created and managed as files. Files are the unit of storage in a computer. When
the data is managed, it is important that the relations governing the meaningful data groups
are easy to define and manipulate. Each individual information can be shared among several
users. Different users can access the same data for different purpose.

The following table illustrates this:

RDBMS Concepts and Oracle8i

9

Customer Product Orders
Customer No Product No Ordercode
Name Name Product No
Address UnitPrice Customer No
Outstanding_due Qty_ordered Order_Value

Table 1.1 Customer, Product and Orders Files

In the above table, a relationship between the Customer No. in the Customer file and the
Customer No. in the Orders file has to be established so that the validity of the customer is
maintained. Likewise, for the same customer, the product that has been ordered has to be
related to the product file. Thus, the database differs depending on how it is organized.

1.6 Database User

One person typically defines, constructs, and manipulates the database. However, many
persons are involved in the design, use, and maintenance of a large database with a few
hundred users. In this section we identify the people whose jobs involve the day-to-day use
of a large database; we call them the “actors on the scene.” And also we consider people who
may be called “workers behind the scene” those who work to maintain the database system
environment, but who are not actively interested in the database itself.

Database administrators

If any organization where many persons use the same resources, there is a need for a chief
administrator to oversee and manage these resources. In a database environment, the primary
resource is the database itself and the secondary resource is the DBMS and related software.
Administering these resources is the responsibility of the database administrator (DBA).

The DBA is responsible for authorizing access to the database, for coordinating and
monitoring its use, and for acquiring software and hardware resources as needed. The DBA is
accountable for problems such as breach of security or poor system response time. In large
organizations, the DBA is assisted by a staff that helps in carrying out these functions.
Database designers

Database designers are responsible for identifying the data to be stored in the database and
for choosing appropriate structures to represent and store this data. These tasks are mostly
undertaken before the database is actually implemented. It is the responsibility of database
designers to communicate with all prospective database users, in order to understand their
requirements, and to come up with a design that meets these requirements.

In many cases, the designers are on the staff of the DBA and may be assigned other staff
responsibilities after the database design is completed. Database designers typically interact
with each potential group of users and develop a view of the database that meets the data
and processing requirements of this group. These views are then analyzed and integrated
with the views of other user groups. The final database design must be capable of supporting
the requirements of all user groups.

End Users

There are the persons whose jobs require access to the database for querying, updating, and
generating reports; the database primarily exists for their use. There are several categories of
end users.

RDBMS Concepts and Oracle8i

10

 Casual end users occasionally access the database, but they may need different

information each time. They use a sophisticated database query language to specify
their requests and are typically middle or high-level managers or other occasional
browsers.

 Naive or parametric end users make up a sizable portion of database end users. Their

main job function revolves around constantly querying and updating the database,
using standard types of quires and updates called canned transactions that have been
carefully programmed and tested. We are all accustomed to dealing with several types
of such users. Bank tellers check balances and post withdrawals and deposits.
Reservation clerks for airlines, hotels, and car rental companies check availability for a
given request and make reservations. Clerks at receiving stations for courier mail enter
package identifications via bar code and descriptive information through buttons to
update a central database of received and in-transit packages.

 Sophisticated end users include engineers, scientists, business analysts, and others who

thoroughly familiarize themselves with the facilities of the DBMS so as to meet their
complex requirements.

 Stand-alone users maintain personal databases by using ready-made program packages

that provide easy-to-use menu or graphics-based interfaces. An example is the user of a
tax package that stores a variety of personal financial data for tax purposes.

A typical DBMS provides multiple facilities to access a database. Naïve end users need to
learn very little about the facilities provided by the DBMS; they have only to understand the
types of standard transactions designed and implemented for their use. Casual users learn
only a few facilities that may use repeatedly. Sophisticated users try to learn most of the
DBMS facilities in order to achieve their complex requirements. Stand-alone users typically
become very proficient in using a specific software package.

System Analysts and application programmers

System analysts determine the requirements of end users, especially naïve and parametric
end users, and develop specifications for canned transactions that meet these requirements.
Application Programmers implement these specifications as programs; then they test, debug,
document, and maintain these canned transactions. Such analysts and programmers should
be familiar with the full range of capabilities provided by the DBMS to accomplish their tasks.

Workers behind the Scene

In addition to those who design, use, and administer a database, others are associated with
the design, development, and operation of the DBMS software and system environment. These
persons are typically not interested in the database itself. We call them the workers behind
the scene, and they include the following categories.

DBMS Designers And Implementers

These are persons who design and implement the DBMS modules and interfaces as a
software package. A DBMS is a complex software system that consists of many components
or modules, including modules for implementing the catalog, query language, interface
processors, data access, and security. The DBMS must interface with other system software,
such as the operating system and compilers for various programming languages.

RDBMS Concepts and Oracle8i

11

Tool developers

Tools are software packages that facilitate database system design and use, and help in
improving performance. Tools are optional packages that are often purchased separately.
They include packages for database design, performance monitoring, natural language or
graphical interfaces, prototyping, simulation, and test data generation. Tool developers
include persons who design and implement such tools. In many cases, independent software
vendors develop and market these tools.

operators and maintenance personnel

These are the system administration personnel who are responsible for the actual running
and maintenance of the hardware and software environment for the database system.

Although the above categories of workers behind the scene are instrumental in making the
database system available to end users, they typically do not use the database for their own
purposes.

1.7 Database system

Database and database technology are having a major impact on the growing use of
computers. It is fair to say that database will play a critical role in almost all areas where
computers are used, including business, engineering, medicine, law, education, and library
science, to name a few. The word database is such common uses that we must begin by
defining what a database is. Our initial definition is quite general.

A database is a collection of related data. By data, we mean known facts that can be recorded
and that have implicit meaning. For example, consider the names, telephone numbers, and
addresses of the people you know. You may have recorded this data in an indexed address
book, or you may have stored it on a diskette, using a personal computer and software such
as DBASE IV or V, PRADOX, or EXCEL. This is a collection of related data with an implicit
meaning and hence is a database.

The preceding definition of database is quite general; for example, we may consider the
collection of words that make up this page of text to be related data and hence to constitute a
database. However, the common use of the term database is usually more restricted. A
database has the following implicit properties:

 A database represents some aspect of the real world, sometimes called the mini world or

the Universe of Discourse (UoD), Changes to the miniworld are reflected in the database.

 A database is a logically coherent collection of data with some inherent meaning. A
random assortment of data cannot correctly be referred-to as a database.

 A database is designed, built, and populated with data for a specific purpose. It has an

intended group of users and some preconceived application in which these users are
interested.

In other words, a database has some source from which data are derived, some degree of
interaction with events in the real world, and an audience that is actively interested in the
contents of the database.

RDBMS Concepts and Oracle8i

A database can be of any size and of varying complexity. For example, the list of names and
addresses referred to earlier may consist of only a few hundred records, each with a simple
structure. On the other hand, the card catalog of a large library may contain half a million
cards stores under different categories-by primary author’s last name, by subject, by book
title-with each category organized in alphabetic order. A database of even greater size and
complexity is maintained by the Internal Revenue Service to keep track of the tax forms filed
by taxpayers of the United States. If we assume that there are 100 million taxpayers and if
each taxpayer files an average of five forms with approximately 200 characters of
information per form, we would get a database of 100*(10^6)*200*5 characters (bytes) of
information. Assuming that the IRS keeps the past three returns for each taxpayer in
addition to the current return, we would get a database of 4*(10^11) bytes. This huge
amount of information must be organized and managed so that users can search for,
retrieve, and update the data as needed.

A database may be generated and maintained manually or by machine. The library card
catalog is an example of a database that may be manually created and maintained. A
computerized database may be created and maintained either by a group of application
programs written specifically for that task or by a database management system.
A database management system (DBMS) is a collection of programs that enables users to
create and maintain a database. The DBMS is hence a general-purpose software system that
facilitates the processes of defining, constructing, and manipulating databases for various
applications. Defining a database involves specifying the data types, structures, and
constraints for the data to be stored in the database. Constructing the database is the process
of storing the data itself on some storage medium that is controlled by the DBMS.
Manipulating a database includes such functions as querying the database to retrieve
specific data, updating the database to reflect changes in the miniworld, and generating
reports from the data.

 Application Programs / Queries

Software to Process Queries /

Programs

Software to Access Stored Data

Users/Programmers

DATABASE
SYSTEM

DBMS
SOFTWARE

Stored Database
Definition (Meta-Data)

Stored
Database

12

RDBMS Concepts and Oracle8i

13

It is not necessary to use general-purpose DBMS software for implementing a computerized
database. We could write our own set of programs to create and maintain the database, in
effect creating our own special-purpose DBMS or not-we usually have to employ a
considerable amount of software to manipulate the database in addition to the database
itself. We will call the database and software together a database system.

1.8 Database Models

The database models can be broadly classified into two ways:

• Record-based Model

• Object-based Model

The Object-based model is used to define the collection of tools, which describe the data, data

relationships etc. The record-based model as the name says describes the access techniques of

a DBMS and the data structures.

Record-based Model

The Record-based model consists of three types of models:

• Hierarchical Model

• Network Model

• Relational Model

In the HIERARCHIAL MODEL, data is stored in the form of parent-child relationship. It is

more like a tree structure and explodes from a parent to one or more children in the tree. The

parent is called root and the children or branches are called nodes. The last node is called the

leaf node. Data stored at different levels are accessible from the nodes.

The main disadvantage of this system is that, it is not possible to directly enter a new node.

In the case of the NETWORK MODEL, parent-child relationship is not expected since the data

are going to be referred using pointers or locators which locate the data. Also any to any data

connections can be made at the time of defining the data. The disadvantage of this type of

model is that it leads to complexity in the structure since data are accessed using locators.

Dr. Edgar F. Codd first introduced the RELATIONAL MODEL in 1970s. It was an attempt to

simplify the data structure. All the data in the database are represented using a simple row-

column type or a tabular structure.

RDBMS Concepts and Oracle8i

14

1.9 Short Summary

 Relational databases are composed of relations, managed by relational operations, and

governed by data integrity constraints.

 Oracle8 is based on the object relational database management system.

 Oracle8i server is the database for internet computing

 A relational database can be accessed and modified by executing structured query

language statements

1.10 Brain Storm

1. What is RDBMS?

2. Explain the difference between RDBMS and DBMS?

3. Explain about data and database?

4. Explain about different types of users?

5. Explain about classification of database models?

RDBMS Concepts and Oracle8i

15

Lecture 2

Entity Relationship Model

Objectives

After completing this lesson, you should be able to do the following

 Discuss the theoretical and physical aspects of a relational database

 Describe the ER model and its notations

 Describe the entity, attributes and relationship of ER model

 Discuss about mapping cardinalities

RDBMS Concepts and Oracle8i

16

Coverage Plan

Lecture 2

2.1 Snap shot

2.2 Entity relationship model

2.3 Entity

2.4 Attributes

2.5 Relationships

2.6 Mapping cardinalities

2.7 Short summary

2.8 Brain storm

RDBMS Concepts and Oracle8i

17

2.1 Snap Shot

An entity relationship model is derived from business specifications or narratives and built

during the analysis phase of the system development life cycle. ER models separate the

information required by a business from the activities performed within a business. Although

businesses can change their activities, the type of information tends to remain constant.

2.2 Entity-Relationship model

ER model is a popular high level conceptual data model. This model and its variations are

frequently used for the conceptual design of database applications, and many database

design tools employ its concepts. In this section we describe an example database, called

company, that serves to illustrate the ER model concepts and their use in schema design. We

list the data requirements for the database here, and then we create its conceptual schema

step-by-step as we introduce the modeling concepts of the ER model. The company database

keeps track of a company’s employees, departments, and projects. Suppose that, after the

requirement collection and analysis phase, the database designers started the following

description of the ‘miniworld’– the part of the company to be represented in the database:

 The company is organized into departments, each department has a unique name, a

unique number, and a particular employee who manages the department. We keep

track of the start date when that employee began managing the department. A

department may have several locations.

 A department controls a number of projects, each of which has a unique name, a

unique name, and a single location.

 We store each employee’s name, social security number, address, salary, sex, and

birthdate. An employee is assigned to one department but may work on several

projects, Which are not necessarily controlled, by the same department. We keep track

of the number of hours per week that an employee works on each project. We also keep

track of the direct supervisor of each employee.

 We want to keep track of the dependents of each employee for insurance purposes. We

keep each dependent’s name, sex, birthdate, and relationship to the employee.

The schema for this database application can be displayed by means of the graphical notation

known as ER diagrams.

RDBMS Concepts and Oracle8i

18

 N 1

 1 1 1

1 N 1 M N

 Supervisor Supervisee

 N

Notation for entity-relationship diagrams

 Symbol Meaning

 Entity type

 Weak Entity type

Relationship type

 Identifying relationship type

 Attribute

 Key Attribute

 Multivalued attribute

Employee

Wor
ks

Man
age

mini
Lna Number

Fna Locat
Addr

Na Name

sex Sala
SSN Department

Noof

Sdat
Bdat

Ctrls

Hrs

NAMEE

Number

Locatio

Sex Bda

NA
Rsh

Wo

Depe
nts
on

rks-

Dependent

Projec
Super
vision t

RDBMS Concepts and Oracle8i

 …
 Composite Attribute

 Derived attribute

 E1 R E2 Total participation of E2 in R

 1 N
 E1 R E2 Cardinality ratio 1:N for E1:E2 in R

 R (min, max) E Structural constraint (min, max)
 on Participation of E in R.

ER Model Concepts

Entities, Attributes and Relationships

The relational design process provides a structured approach to modeling an information

system’s data and the business rules for that data. After you learn the fundamentals of this

process, you should be able to take the information learned from the requirements gathered

for the system (such as the information presented in the case study) and easily design a

database.

The three key components used in relational database design (entities, attributes and

relationships) are outlined in following Table.

THE THREE KEY COMPONENTS USED IN RELATIONAL DATABASE DESIGN.

Design Implemented in SQL Server Examples
Component

Entities Tables Student, Course

Attributes Columns in a Table Student’s Name,

 Course number

19

RDBMS Concepts and Oracle8i

Relationships Primary/Foreign key Teacher to Class

 Columns or Tables

The upcoming subsections describe each component in more detail. The chapter then

discusses in general terms how these components are implemented in SQL Server.

2.3 Entities

An entity is an object with a distinct set of properties that is easily identified. Entities are the

building blocks of a database. Some examples of entities are Student, Teacher and

Classroom. You represent an entity using a rectangular box that contains the name of the

entity.

Student Teacher

Classroom

An entity instance is a specific value of an entity. Entities are the basic building blocks of

relational database design. An entity defines any person, place, thing or concept for which

data will be collected. Some examples of entities include the following:

 Person: student, teacher

 Place: classroom, building

 Thing: computer, lab equipment

 Concept: course, student’s attendance

When you attempt to discover possible entities in your data model, it is often helpful to look

(or listen) for nouns / noun phrases during the requirements analysis. Because nouns

describe people, places, things or concepts, this trick usually leads you to an entity. The

challenge is to distinguish between the relevant and the irrelevant concepts. Consider the

following excerpt from the case study:

“We have ten departments on campus that offer about 400 different courses – everything

from Commerce 101 to Zoology 410. Of course, we don’t have enough professors to teach

every course every semester, but we do manage to offer about 150 different courses each

semester.”

20

RDBMS Concepts and Oracle8i

21

The highlighted words or phrases are likely candidates for modeling as an entity. The

professor, or teacher, concept is an obvious choice, as are the ideas of a course and

department. The database will have to keep track of many different teachers and courses. In

addition, the database will be used over many semesters, so if detailed information needs to

be kept about each semester, the concept of a semester should be modeled as an entity.

Notice that the idea of a campus, while important to a college, is not a candidate for an entity

in this example. This is because a small college with only one campus will probably build any

campus-specific information directly into its data model. If the college were planning to

expand to multiple campuses in the future, creating a campus entity then would be important

because it would allow you to collect information about each distinct campus.

A good practice is to list all the entities in your database with a one sentence description of

what that entity represents. For example, a teacher may be defined as “a person employed by

the college who is responsible for instructing students in a class.” Usually, a good entity can

be described in one sentence, unless it is a very abstract concept.

Review the case study to see if you can identify some entities that will be used in the data

model. Then, review the following list of entities:

 Teacher: A person employed by the college who is responsible for instructing a class

sessions.

 Student: A person who is enrolled in classes at the college and attends class sessions.

 Course: The subject material taught in a class

 Class: A scheduled instance of a course that is taught by one teacher and that meets in a

particular room during specific times of the week.

 Class Session: An instance of a class that occurs at a particular date and time.

When speaking of an entity in the data model, one usually is referring to an instance of that

entity. An instance is a particular occurrence of an entity that is distinguishable from all other

occurrences of that entity. For example, the college has multiple professors, such as

Professors Noel, Professor Press and Professor Smith. Each is an instance of a teacher. The

concept of an instance is important to understanding relationships.

RDBMS Concepts and Oracle8i

2.4 Attributes

An attribute is a property of an entity that differentiates if from other entities and provides

information about the entity. An attribute type is a property of an entity type. For example,

the attributes of the entity Student are Course Name, Course Number and Gender. In an ER

diagram, you represent attributes as ellipses and label them with the name of the attribute.

Course

Course

 Gender

 Student

The second major data-modeling concept that you must understand is that of attributes.

Attributes are additional characteristics or information defined for an entity.

An entity’s attributes don’t define an entity, but they provide additional information about an

entity that may be useful elsewhere. The concept of a teacher can be defined (definition)

without knowing the teacher’s name, salary, or educational level (attributes). However,

knowing nothing about its teachers does the college little good. And that’s where the

attributes come in handy.

Review the case study and the entities described in the previous section. Try to list some

attributes for each entity, then review the following list of possible attributes for each entity:

• Teacher: Name, gender, social security number, address, salary, years tenured

• Student: Name, gender, social security number, billing address, college address, class

level, grade point average

• Course: Course number, course name, prerequisites

• Class: Course number, scheduled meeting times, scheduled room, assigned teacher,

maximum enrollment, students enrolled.

• Class Session: Course number, date and time of session, students attending.

22

RDBMS Concepts and Oracle8i

23

There is no set method or trick for discovering attributes of a particular entity. Usually,

brainstorming on the different characteristics of an entity is sufficient. If you find that you are

having difficulty, you may want to check your definition of the entity to see if it is specific

enough.

2.5 Relationships

Entities and attributes unable you to explicitly define what information, or data, is being

stored in the database. Relationships are the other powerful feature of relational modeling

and give the modeling technique its name. A relationship is a logical linkage between two

entities that describes how those entities are associated with each other. Think of

relationships as the logical links in a database that turn simple data into useful information.

For instance, our definition of a teacher reads: “A person employed by the college who is

responsible for instructing students in a class.”

You will now see to identify not only the need for a relationship, but also the type of

relationship.

Identifying relationships in a data Model

If entities can be thought of as the nouns in data modeling, then relationships are best

described as the verbs. In fact, relationships often have a verb phrase associated with them in

the data model, much like entities have an associated definition. One trick to discovering

relationships between entities is to look closely at the entity definitions. Consider the

following entity definitions from earlier in the chapter:

 Teacher: A person employed by the college who is responsible for instructing a CLASS

of STUDENTS.

 Student: A person who is enrolled in CLASSES at the college and attends CLASS

SESSIONS.

 Course: Defines the subject material taught in a CLASS.

RDBMS Concepts and Oracle8i

24

 Class: A scheduled instance of a COURSE that is taught by one TEACHER and that

meets in particular room during specific times of the week.

 Class Session: An instance of a CLASS that occurs at a particular date and time.

Notice that the definitions now are written to show other entities in all caps, and significant

verbs or verb phrases appear in italics. Formatting your entity definitions in this way makes it

easy to identify possible relationships between entities. These definitions can be distilled into

several simple statements that highlight the relationships between the entities in this case

study:

 A TEACHER instructs CLASSES

 A COURSE defined subject material for CLASSES.

 STUDENTS are enrolled in CLASSES

 STUDENTS attend CLASS SESSIONS

 A CLASS occurs as CLASS SESSIONS

In an ER diagram, relationships are represented as lines drawn between entities. Often, the

verb phrase appears near the line to describe the relationship further.

2.6 Mapping cardinality

The identifying property of a relationship is called its cardinality. The cardinality of a

relationship allows the database modeler to specify how instances of each entity relate to each

other. There are three major types of cardinality:

• One-to-One. A single instance of one entity is associated with a single instance of another

entity. This type of relationship is relatively uncommon; it is typically used when an

entity can be classified into several subtypes.

If One-to-One relationship is more complicated than a simple One-to-One cardinality, the line

is usually denoted in some way (such as with a dot) to indicate the cardinality.

RDBMS Concepts and Oracle8i

 Employee Manages Department

25

 E1 r1 d1

 E2 r2 d2

 d3

 E3 r3

Above example of a 1 : 1 binary relationship type is manages, which relates a department

entity to the employee who manages that department. This represents the constraints that an

employee can manage only one department and that a department has only one manager.

• One-to-Many. An instance of an entity (called the parent) is associated with zero or

several instances of another entity (called the child). An example of this type of

relationship can be found by examining the teacher and class entities. A teacher may

instruct zero or more classes during the course of a semester.

A One-to-Many relationship is drawn as a line between the entities involved. The child end of

the relationship typically has a dot.

 Employee Works_for Department

 E1 r1 d1

 E2 r2 d2

 E3 r3

RDBMS Concepts and Oracle8i

Above example, consider a relationship type works_for between the two entity types

Employee and department, which associates each employee with the department the

employee works for. Each relationship instance in Works_for associates one employee entity

and one department entity.

• Many-to-Many. Many instances of an entity are associated with many instances of

another entity. Consider the enrollment relationship between a student and a class. A

single student may be enrolled in many classes, and a single class may enroll many

students. SQL Server’s implementation of the relational model does not directly support a

Many-to-Many relationships to a third entity.(table)..

A many-to-many relationship is drawn as a line between the entities involved. Both ends

of the line have a dot.

 Employee Works_on Project

26

 E1 r1 d1

 E2 r2 d2

 r3

Data Modeling Concepts

You have just learned about entities, attributes, and relationships in an abstract sense. The

most important things to take away from this section are the following definitions:

• An entity defines any person, place, thing, or concept for which data will be collected.

• Attributes are additional characteristics or information defined for an entity.

• A relationship is a logical linkage between two entities that describes how the entities are

associated with each other.

RDBMS Concepts and Oracle8i

27

You should now know what each of these terms means in the context of data modeling, and

so are ready to see how these ideas are used in SQL Server. The following sections introduce

more concrete terminology that will rigidly define entities, attributes, and relationships in the

terms that SQL Server understands.

Implementing Entities and Attributes

Now that you have become familiar with the three main concepts used in relational

modeling, it’s time to see how these concepts are used in SQL Server. Entities and attributes

are implemented in SQL Server as tables and columns, respectively. The following

subsections describe table and column characteristics in SQL Server’s terminology. You will

see how to choose a primary key and apply appropriate column constraints. The following

main section deals with how relationships are defined between tables in a database in SQL

Server.

Characteristics of Tables

Recall that the earlier discussion of entities introduced the concept of an instance of an entity.

In SQL Server, tables are used to store information about each instance of an entity.

First Name

Last

Name

Sex

Social Securiy

Number

Salary

Years

Tenured

Mathu Sankar M 001-03-1869 $45,000 12

Saravana Kumar M 079-91-2060 $52,500 15

Kalai Selvi F 114-78-1342 $59,000 16

Meena Devi F 001-23-1903 $60,100 18

Diana Joseph F 001-14-1803 $55,000 19

Note that a table stores each instance of an entity as a row in the table, with each attribute

stored in a column. Rows and columns are sometimes referred to as records and fields,

respectively. The order of the rows and columns in a table is not important, although columns

that store related information should be grouped together. Note that in the example table, the

FirstName and LastName columns are grouped in this way.

The following list summarizes the terminology just mentioned:

• Entities are modeled as tables.

• In a table, each instance of an entity is called a row

• Attributes are modeled as columns in a table

RDBMS Concepts and Oracle8i

28

• Programmers often refer to rows and columns as records and fields, respectively

Although you can choose any names you want for tables and columns, following a few

guidelines can make your data model consistent and easier to read. These guidelines include:

• Table and column names are usually singular; this is a relational modeling convention.

• Tables are almost always named after the entity they represent

• Mixed case is preferable to using underscores to separate words.

• Ensure that columns that store the same type of information in different tables have the

same name. For instance, if the teacher table and the student table both store address

information, make sure that the column storing the ZIP code has the same name in both

tables.

• Ensure that similarly named columns all have the same data types.

SQL Server does place some restrictions on table and column names. The restrictions include

the following:

 Table and column names cannot be longer than 128 characters.

 Table names must be unique within the database

 Column names must be unique within a table

SQL Server enforces the uniqueness of table and column names for you, but for a relational

model to work properly, each row must also be unique. This concept is known as entity

integrity or row integrity. In other words, each instance of an entity must be distinguishable

from all other instances. SQL Server does not automatically enforce it, the person designing

the database must build this row uniqueness into the data model. Row uniqueness is

enforced by using a special column in the table called the primary key.

2.7 Short Summary

 An entity relationship model is an illustration of various entities in a business and the

relationships between them.

RDBMS Concepts and Oracle8i

29

 Entity: An entity is an object with a distinct set of properties that is easily identified.

 Attribute: Each column in a table has a column name and every column must have a

different name. The column or field is called an Attribute of a table.

 Relation : A relation is the term for defining the association between the tables.

 Relationship: A named association between entities showing optionality and degree.

2.8 Brain Storm

1. What is entity?

2. Explain about the types of relationship?

3. Give one simple example for ER model?

4. Which type of Relationship is in between the purchase and customer?

RDBMS Concepts and Oracle8i

30

Lecture 3

Database Concepts

Objectives

After Completing This Lesson, You Should Be Able To Do The
Following

 Discuss the theoretical and physical aspects of a database

 Describe the database design

 Discuss about Object database design model

 Discuss about on-line transaction processing and DSS

 Discuss about Data concurrency and data integrity

RDBMS Concepts and Oracle8i

31

Coverage Plan

Lecture 3

3.1 Snap shot

3.2 RDBMS concepts

3.3 Object based data models

3.4 OLTP

3.5 DSS

3.6 Transaction

3.7 large Database management control

3.8 Data concurrency

3.9 Data consistency

3.10 Data Integrity

3.11 Short summary

3.12 Brain Storm

RDBMS Concepts and Oracle8i

32

3.1 Snap Shot

Databases and database technology are having a major impact on the growing use of

computers. It is fair to say that databases will play a critical role in almost all areas where

computers are used, including business, engineering, medicine, law, education, and library

science, to name a few. Having identified all the data in the system, it is necessary to arrive at

the logical database design. Database design involves designing the conceptual model of the

database.

3.2 RDBMS Concepts

RDBMS is a distinct type of DBMS and offers implicit relational connections through values

and references. These are only possible because the data in RDBMS is stored as tabular

structure, which grows as a spreadsheet of information in a two-dimensional direction.

RDBMS enables a better understanding of the E-R model and the relational algebra. RDBMS

has specific features and characteristics such as non-procedural constructs through which the

developer can program the applications more effectively incorporating validations and

security of data access.

We shall now see the concepts and features supported by RDBMS.

3.3 Object-based Data Model

Object-based models can be classified as:

• Binary model

• Entity-Relationship model

• Infological Model

The widely accepted model is the Entity-Relationship model. It has gained the acceptance as

the ideal model for any database design. Peter Chen first introduced the Entity-Relationship

model in 1976. It is based on a perception of the real world things, which represent

information. E-R model helps in database design through a better conception and

arrangement. Through the E-R model, the application developer can look forward to a

RDBMS Concepts and Oracle8i

33

foolproof data definition and table design incorporating the real world application

functionality completely. The definitions are dealt below.

3.4 OLTP

On-Line Transaction Processing or OLTP applications are multi-user on-line systems where

multiple users access the same data simultaneously and modify the information, which are

sensitive in nature. OLTP systems should ensure consistent view of data for modification in

that multi-user environment and make sure that the transactions are serialized. In OLTP

applications, decisions can wait but data accuracy can’t be compromised. Examples of OLTP

environment are reservation systems, bank teller counters, stock exchange counters, betting

system in racecourses and so on.

In OLTP systems, data is selected for updating critical information. So, though you get a

feeling that you get simultaneous data access, actually the user operations are serialized. i.e.,

they are carried out by the system one after another.

While there is indeed a great deal of complexity in building online transaction processing

systems, they can usually be broken down into fairly standard finite steps. For example, to

update a customer’s address record, a developer would have to code the following steps:

 Verify user authorization to update database

 Ask for the customer number

 Verify it is valid

 Retrieve the record and populate the screen

 Position the cursor on the address

 Accept user input

 Verify input against any rules

 Ask for user feedback on correctness

 Rewrite the record

To the user and developer, it should be as easy as “update a customer’s address record.” The

system should be concerned with the numerous steps it takes to accomplish the task. Smart

OLTP interfaces will take care of the detailed transaction management steps. In client/server

architectures, smart OLTP interfaces handle distributed transaction management session

management, and service-request management.

RDBMS Concepts and Oracle8i

34

Currently, the only client/server development tool available with a smart OLTP interface is

Ellipse from cooperative solutions.

3.5 DSS

Decision Support Systems or DSS systems are multi-user online applications where decision

making is the key factor for processing. In DSS applications, data sensitivity is not very

critical but data availability without delay is very important. Examples of DSS applications

are manufacturing applications, ERP applications, factory automation environments, and so

on.

In DSS, the decision making is crucial and the RDBMS supporting a DSS application should

ensure that the user does not wait for a long time to see a permanent version of the data for

decision making.

3.6 Transaction

Transaction in business data processing is a logical unit of work that would make sense on

completion as a whole. This means, either all the operations in the unit are done fully or none

of them are done. For example, when you go to bank to draw money from your account, the

teller does a set of operations like checking your account, making entries in a set of registers,

handing over the amount to you and you check the amount before you leave the counter. If

any of these operations fail, then the rest of the operations together do not make sense and

they have to be undone. If there is no sufficient balance in your account, for example, then the

teller has to undo all the entries that are made about your cheque number and other

information about your account from the registers.

Transaction in RDBMS terms is similar to what has been explained above. It involves one or

more of the database operations like insert, delete or update, which are either done together,

are done permanently in the database or none of the operations are done.

RDBMS gives powerful commands to simulate a real life transaction with the database. So,

you need not strike out or undo manually if one of the operations go wrong. You can rather

use simple commands like ‘ROLLBACK’ to automatically undo those operations, which are

part of the incomplete transaction. Alternatively to make permanent the operations of a

RDBMS Concepts and Oracle8i

35

transaction you can simply use the ‘COMMIT’ command. A transaction is initiated as well as

ended by either committing or rolling back.

3.7 Large Database Management Control

RDBMS offers to control database with large sizes of information running to Giga bytes of

storage. For examples, Oracle8 is capable of managing large databases of probably an

unlimited size or close to hundreds of Giga bytes of storage. The database space management

in Oracle 7 is extensive and space control is done interactively through simple, English like

commands and a full and complete space control is possible for the database administrator.

3.8 Data Concurrency

Data concurrency is the phenomenon by which multiple users operate on the same data

simultaneously and get response concurrently without the loss of consistent view of data and

without waiting for response from the database.

RDBMS allows a large number of users to execute concurrently a variety of applications and

operate on the same data simultaneously. With this multi-user database access, RDBMS still

minimizes data contention and assures data concurrency and consistency. For instance,

Oracle 8’s data concurrency feature enables it to suit well for both OLTP and DSS

applications. This feature could even be viewed as a unique offering from Oracle8.

3.9 Data Consistency

Data consistency is a feature by which the RDBMS ensures what you see or understand about

the state of the data is what is actually the state in the database. This means you get a

consistent view of the database from the RDBMS every time you query the database so that

you can go ahead with processing the data.

Oracle 8 provides foolproof data consistency by offering two types of data consistency, one at

the statement level and other, at the transaction level. This is due to the fact that since the

consistent view of data is required for two distinct kinds of operations, one to make a

decision and other to effect a change based on the view. So, the first operation is just a query

RDBMS Concepts and Oracle8i

36

and is more of a DSS nature and the second are a transaction where a query and a subsequent

modification together make sense and this is of OLTP nature.

Statement level read consistent view of data is consistent during the execution time and the

next execution of the same query might give a different view of data.

Transaction level read consistent view of data is consistent for the whole transaction. This

means, the view of data is the same for one or more execution of the query inside the

transaction. Once the transaction ends then the view of the data may change.

3.10 Data Integrity

Data integrity ensures that the data entered into the database by the user is checked for it’s

correctness and is the data that is supposed to go into the database. Thus, the data gets

automatically validated when it is entered as per the instructions or commands of the

designer and by this way RDBMS ensures that the application is of a high degree of data

security and integrity.

RDBMS ensures data integrity through automatic validation of data using integrity

constraints. The integrity constraints are non-procedural constructs and by just specifying

those, the designer can automate the validation process at the time of data entry. Popular

integrity constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY and CHECK

constraints.

3.11 Short summary

 The object based logical model can be defined as a collection of ideal tools for describing

data, data relationships, and data constraints.

 Transaction in business data processing is a logical unit of work that would make sense

on completion as a whole.

 The object relational model supports both object oriented and relational concepts. It

eliminates certain discrepancies in the relational model. In this model it is possible to

provide well defined interfaces for the application. A structure once created can be

reused- this is the fundamental property of the oops concepts.

 Data integrity this ensures the accuracy of the data.

RDBMS Concepts and Oracle8i

37

3.12 Brain Storm

1. what is OLTP and DSS?

2. What is transaction?

3. What is the difference between Data concurrency and data consistency?

4. What is Large Database management control?

RDBMS Concepts and Oracle 8i

38

Lecture 4

Normalization

Objectives

After completing this lesson, you should be able to do the following

 Discuss the Redundancy and Inconsistent dependency

 Know the purpose for normalization

 Understand the steps involved for normalization.

 Describe the use of normalization

 Discuss about Denormalization

 Discuss about functional dependency

RDBMS Concepts and Oracle 8i

39

Coverage Plan

Lecture 4

4.1 Snap shot

4.2 Normalization

4.3 Redundancy and inconsistent dependency

4.4 First normal form

4.5 Second normal form

4.6 Third normal form

4.7 Denormalization

4.8 Short summary

4.9 Brain Storm

RDBMS Concepts and Oracle 8i

40

4.1 Snap Shot

In this session we will concentrate on normalization which is an important step in database

design, particularly for relational DBMSs. The relational data model is based on a relation.

When structuring data that is to be stored, the analyst must anticipate the need to access the

data to meet unexpected requirements, and to reduce redundancy. These can be achieved

through the techniques of normalization that provides a systematic way of boiling data

structures down to their simplest possible forms.

4.2 Normalization

Normalization is the process of organizing data in a database. This includes creating tables

and establishing relationships between those tables according to rules designed both to

protect the data and to make the database more flexible by eliminating two factors:

redundancy and inconsistent dependency. Normalizing a logical database design involves

organizing the data into more than one table. Normalization involves performance by

reducing redundancy. Redundancy can lead to:

Inconsistencies – errors are more likely to occur when facts are repeated.

Update anomalies – Inserting, modifying and deleting data may cause inconsistencies.

Normalization is a technique that can be applied to data to ensure that a set of tables is

derived that contains no redundant data. Normalization is a process of simplifying the

relationship between data elements in a record. It is the transformation of complex data stores

to a set of smaller, stable data structures. Normalized data structures are simpler, more stable

and are easier to maintain. Normalization can therefore be defined as a process of simplifying

the relationship between data elements in a record.

Purpose for Normalization

Normalization is carried out for the following four reasons:

 To structure the data so that there is no repetition of data, this helps in saving space.

 To permit simple retrieval of data in response to query and report requests.

RDBMS Concepts and Oracle 8i

41

 To simplify the maintenance of the data through updates, insertions and deletions.

 To reduce the need to restructure or reorganize data when new application

requirements arise.

Steps Of Normalization

Systems analysts should be familiar with the steps in normalization, since this process can

improve the quality of design for an application. Starting with a data store developed for a

data dictionary the analyst normalizes a data structure in three steps. Each step involves an

important procedure to simplify the data structure.

It consists of basic three steps:

1. First Normal form, which decomposes all data, groups into two-dimensional records.

2. Second Normal Form, which eliminates do not fully depend on the primary key of the

record.

3. Third Normal Form, which eliminates any relationships that, contain transitive

dependencies.

User Views/ Data
Stores

Unnormalized
Relations

First Normal Form

Second Normal
Form

Third Normal Form

Step 1: Remove repeating
groups. Fix record length
Identify primary key

Step 2: Removal of data
items which are not
dependent on primary key.

Step 3: Removal of
transitive dependencies

RDBMS Concepts and Oracle 8i

42

The relation obtained from the data store such as Employee register will most likely be

unnormalized. It will consist of repeating groups and record will not be of fixed length.

Unnormalized Employee Record

Emp.No. Name Emp.
Details

Salary Annual
Sal.Earned

Bank
Details

A01 Jose
A02 Joseph

Emp Detils

Dept. Grd Date Joined Exit Details
Cd. Date

1 30 10/01/2000
2 10 01/10/2000

Salary

Basic DA HRA
A01 Jose
A02 Joseph

Annual Salary Earned

MMYY Net Paid

195 3600
196 3800
197 3600
198 3500
199 6000

Bank Details

Code Name Address A/C

No.
01 SBI Chennai SB2152
03 Canara Madurai 3212

Employee no., employee name, employee details (department code, grade, date of joining,

exit code and exit date), annual salary earned (MMYY, net paid), bank details (bank code,

bank name, address, employees A/C no).

Here it is clearly seen that the employee’s annual salary earned details which are: Month and

Year paid, net paid, are being repeated. Therefore this relation is not a first normal form.

RDBMS Concepts and Oracle 8i

43

4.3 Redundancy and Inconsistent dependency

Redundant data wastes disk space and creates maintenance problems. If data that exists in

more than one place must be changed, then the data must be changed in exactly the same

way in all the locations. A customer address change is much easier to implement if that data

is stored only in the Customers table and nowhere else in the database.

What is an "inconsistent dependency"? While it is intuitive for a user to look into the

Customers table for the address of a particular customer, it may not make sense to look there

for the salary of the employee who calls on that customer. The employee's salary is related to,

or dependent on, the employee and thus should be moved to the Employees table.

Inconsistent dependencies can make data difficult to access; the path to find the data may be

missing or broken.

There are a few rules for database normalization. Each rule is called a "normal form." If the

first rule is observed, the database is said to be in "first normal form." If the first three rules

are observed, the database is considered to be in "third normal form." Although other levels

of normalization are possible, third normal form is considered the highest level necessary for

most applications.

The three rules of Normalization are:

1. No repeating groups of attributes (fields).

Note: Remove all the duplicating info(attributes). Create a new entity for those.

2. Every non-key attribute (field) is fully functionally dependent upon the key field.

Note: Remove those attributes which are dependent on other attributes.

3. No non-key fields are dependent upon the other non-key field(s).

Note: Remove those attributes that come out by itself (ie.,) automatically.

Let us illustrate this with an example.

Consider an object called Invoice, which contains attributes that are required to prepare an

Invoice.

Invoice Object Attributes

RDBMS Concepts and Oracle 8i

44

Invoice_code, Inv_Date, Order_code, Order_Date,order_qty, Cust_code,cust_name, Address,

item_code, description, unitcost,ordervalue,invoice_value

4.4 First Normal Form

The basic improvement the analyst should make to such a record structure is to design the

record structure so that all records in the file are of fixed length.

A repeating group, that is, the reoccurrence of a data item or group of data items within a

record, is actually another relation. This is removed from the record and treated as an

additional record structure, or relation.

First Normal Form – Employee Record

Emp.No. Name Emp.

Details
Salary Bank

Details
I.Tax

Detials
A01 Jose
A02 Joseph

Emp.No. MMYY Net Paid

A01 195 3600
A01 196 3800
A01 197 3600
A01 198 3500
A02 199 6000

As mentioned above the first normal form is carried out by removing the repeating group. In

this case we remove the Annual salary earned items and include them in a new file or relation

called Annual Salary earned record. Employee number is still the primary key in the

employee record. A combination of employee number and MMYY is the primary key in the

annual salary earned record.

We thus form two record structures of fixed length: Employee record consisting of Employee

no., employee name, employee details (department code, grade, date of joining, exit code and

exit date), bank details (bank code, bank name, address, employees A/C no)

RDBMS Concepts and Oracle 8i

45

Annual salary earned record consisting of – employee no., month & year (MMYY) and net

paid.

In the attributes mentioned above, the first Normal form must not contain repeated groups.

Here the repeated groups are products. When the Invoice Attribute is in 1st Normal Form, the

tables would be:

Invoice_Master Invoice_Item

Invoice_code Invoice_No
Inv_date item_code
Order_code ord_qty
Order_qty ucst
Cust_code Ord_value
Cust_name description
Address
Invoice_value

The attributes that are indicated as bold denote primary key.

4.5 Second Normal Form

The second normal form is achieved when every data item in a record that is not dependent

on the primary key of the record should be removed and used to form a separate relation.

The PF department ensures that only one employee in the state is assigned a specific PF

number. This is called a one-to-one relation. The PF number uniquely identifies a specific

employee; an employee is associated with one and only one PF number. Thus, if you know

the Employee no., you can determine the PF number. This is functional dependency.

Therefore a data item is functionally dependant if its value is uniquely associated with a

specific data item.

Second Normal Form – Employee Record

Emp.No. Name Emp.
Details

Salary A/C
No.

Bank
Code

I.Tax
Detials

A01 Jose SB2152 01
A02 Joseph 3212 03

RDBMS Concepts and Oracle 8i

46

Annual Salary Earned Record

Emp.No. MMYY Net Paid
A01 195 3600
A01 196 3800
A01 197 3600
A01 198 3500
A02 199 6000

Bank Record

Code Name Address
01 SBI Chennai
03 Canara Madurai

The three record structures that are created are:

1. Employee record consisting of: Employee no., employee name employee details

(department code, grade, date of joining, exit code and exit date), bank details (bank

code, bank name, address, employees A/C no.)

2. Annual salary earned record consisting of – employee no., month & year(MMYY) and

net paid

3. Bank record consisting of: bank code, bank name and bank address. All the attributes of

this relation are fully dependent on Bank code.

A table in Second Normal Form must indicate that all the attributes, which are not dependent

of primary key, must be removed. The table in Second Normal Form will be

Invoice_Master Invoice_Item Item_Master

Invoice_code Invoice_No Item_code
Inv_date item_code description
Order_code rate
Cust_code ord_qty
Cust_name Ord_value
Address
Invoice_value

There are no changes in the Invoice details.

RDBMS Concepts and Oracle 8i

47

4.6 Third Normal Form

The third normal form indicates that there must not be any dependency between non-key

attributes. Resolving the above we get,

Invoice_Master Invoice_Item Item_Master

Invoice_code Invoice_No Item_code

Inv_date item_code description

Order_code description rate

Invoice_Value ord_qty

 Ord_value

Order_Cust Customer_Master

Order_code cust_code

Cust_code cust_name

Order_date address

Third normal form is achieved when transitive dependencies are removed from a record

design. Some of the non-key attributes are dependent not only on the primary key but also on

a non-key attribute. This is referred to as a transitive dependency.

A

B

C

Then

RDBMS Concepts and Oracle 8i

48

Conversion to third normal form removes transitive dependence by splitting the relation into

two relations.

Reason for concern. When there is a transitive dependence, deleting A will cause deletion of B

and C as well.

• A, B and C are three data items in a record

• If C is functionally dependent on B and

• B is functionally dependent on A

• Then C is functionally dependent on A

• Therefore, a transitive dependency exists.

There are no transitive dependencies, so it is also in third normal form.

4.7 Demoralization

The end product of normalization is a set of related tables, which comprise the database. The

virtues of normalization have already been enumerated. However, sometimes, to get a simple

output, you have to join multiple tables. This affects the performance of a query. In such

cases, it is wiser to introduce a degree of redundancy in tables either by introducing extra

columns or extra tables.

The intentional introduction of redundancy in a table in order to improve performance is

called demoralization.

For example, consider the following tables, which maintain the details of tables

 A

 B

 B

 C

RDBMS Concepts and Oracle 8i

49

Employee

NAME SSN BDATE SEX SALARY SUPERSSN DNO
Bala 123456 06-10-72 M 5500 789012 5

Diana 789012 06-07-74 F 4850 654321 5
Madhu 654321 05-07-73 M 5080 147258 4
Kalai 147258 22-05-77 F 4500 258369 4

Marthu 258369 01-06-69 M 4800 369147 1
Meena 369147 01-08-77 F 4500 Null 2

Department

DNAME DNUMBER MGRSSN MGRSTARTDATE

Research 5 789012 09-10-1999

Administration 4 147258 05-07-2000

HeadQuarters 1 369147 01-06-1999

Select * from department join employee on department.MGRSSN = employee.SUPERSSN;

Resultant table

Dname Dnum
ber MGRSSN …. Name SSN

Research 5 789012 … Bala 123456

Administration 4 147258 …. Madhu 654321

HeadQuarters 1 369147 …. Maruthu 258369

Select Dname, Dnumber, Name from resultant

Name Dnumber Name
Research 5 Bala
Administration 4 Madhu
HeadQuarters 1 Maruthu

This table structure has simplified the query and speeded up the processing of the query. By

storing extra columns, you are introducing redundancy in the table but improving the

performance of queries.

The decision to denormalize will obliviously result in a trade-off between performance and

data integrity. Denormalization also increases disk space utilization.

RDBMS Concepts and Oracle 8i

50

4.8 Short summary

 Normalization is a technique that is more applicable to record-based data models.

 Normalization is the process of simplifying the relationship between data elements in a

record.

 Normalization is carried out for four reasons which are:

 To structure the data

 To permit simple retrieval of data in response to query

 To simplify the maintenance of data.

 To reduce the need to restructure or reorganize data for new requirements.

 The relation obtained from a data store developed for a data dictionary will most likely

be ‘unnormalized’. The normalization process consists of three basic steps which are:

1. Removal of repeating groups, fixing record length, identification of primary key – first

normal form.

2. Removal of data items which are not dependent on primary key – second normal form.

3. Removal of transitive dependencies – third normal form.

4.9 Brain Storm

1. What are the steps involved for normalization?

2. What is normalization?

3. What is redundancy?

4. What is the purpose of normalization?

5. What is Denormalization?

RDBMS Concepts and Oracle 8i

51

Lecture 5

Rules of RDBMS

Objectives

After completing this lesson, you should be able to do the following

 Discuss about the rules of relational database management system

 Describe about the Data integrity

 Describe about types of integrity

 Discuss about types of keys

 Describe the uses of keys and its examples.

RDBMS Concepts and Oracle 8i

52

Coverage Plan

Lecture 5

5.1 Snap shot

5.2 Codd’s rule

5.3 Data integrity

5.4 Keys

5.5 Short summary

5.6 Brain Storm

RDBMS Concepts and Oracle 8i

53

5.1 Snap Shot

In this session we discuss about the rules of Codd’s. For any RDBMS to be accepted as a full-

fledged RDBMS, it has to follow the twelve Codd’s rules. There are a number of products

called RDBMSs attempting to meet all twelve Codd’s rules, but all the twelve rules are, until

now, not been satisfied by any RDBMS. Oracle is also, not 100% relational, since it does not

obey all Codd’s rules.

5.2 Codd’s Rules

For a database to be ready to use, Dr. E.F. Codd designed twelve rules. The rules are listed

below:

Information Rule

All the information in a relational database must be represented explicitly by values in tables.

Knowledge of only one language is necessary to access all data such as description of the

table and attribute definitions, integrity constraints, action to be taken when constraints are

violated, and security information.

Guaranteed Access Rule

Every piece of data in the relational database can be accessed by using a combination of a

table name. A primary key value that identifies the row and a column name that identifies the

cell. The benefit of this is that user productivity is improved since there is no need resort to

using physical pointers addresses. Provides data independence.

Systematic Treatment of Null Values

RDBMS handles records that have unknown values in a predefined way. It distinguishes

between zeroes, blanks and nulls in records and handles such values in a consistent manner

that produces correct answers, comparisons and calculations.

Active On-Line Catalog Based on the Relational Model

RDBMS Concepts and Oracle 8i

54

The description of a database and its contents are database tables and therefore can be queries

on-line via the data language. The DBA’s productivity is improved since changes and

additions to the catalog can be done with the same commands that are used to access any

other table. All reports and queries are done using this table.

Comprehensive Data Sub-language Rule

A RDBMS may support several languages, but atleast one of them allows the user to do all of

the following: define table view, query and update data, set integrity constraints, set

authorization and define transactions.

View Updating Rule

Any view is theoretically updateable, if changes can be made to the tables that effect the

desired changes in the view. Data consistency is ensured since changes in the underlying

tables are transmitted to the view they support. Logical data independence reduces

maintenance cost.

High Level Inserts, Update and Delete

RDBMS supports insertion, updation and deletion at a table level. With this the RDBMS can

improve performance by optimizing the path to be undertaken to execute the action. Ease of

use is improved since commands act on set of records.

Physical Data Independence

The execution of the requests and application programs is not affected by the changes in the

physical data access and storage methods. Database administrators(DBA’s) can make the

changes to physical access and storage methods, which improve performance but do not

changes in the application programs or requests. This reduces the maintenance costs.

Logical Data Independence

Logical changes in tables and views such as adding/deleting columns or changing field

lengths do not necessitate modifications in application programs or in the format of adhoc

requests.

RDBMS Concepts and Oracle 8i

55

Integrity Independence

Like table/view definitions, integrity constraints are stored in the on-line catalog and

therefore can be changed without necessitating changes in application programs or in the

format of the requests.

Distribution Independence

Application programs are not affected by change in the distribution of the physical data.

Non-subversion Rule

Different levels of the language cannot subvert or bypass the integrity rules and constraints.

In order to adhere to this rule, RDBMS must have an active on-line catalog that contains the

constraints.

5.3 Data Integrity

Data integrity ensures that the data entered into the database by the user is checked for it’s

correctness and is the data that is supposed to go into the database. Thus, the data gets

automatically validated when it is entered as per the instructions or commands of the

designer and by this way RDBMS ensures that the application is of a high degree of data

security and integrity.

RDBMS ensures data integrity through automatic validation of data using integrity

constraints. The integrity constraints are non-procedural constructs and by just specifying

those, the designer can automate the validation process at the time of data entry. Popular

integrity constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY and CHECK

constraints.

Data integrity falls into the following categories

 Entity integrity

 Domain integrity

 Referential integrity

RDBMS Concepts and Oracle 8i

56

Entity integrity

Entity integrity ensures that each row can be uniquely identified by an attribute called the

primary key. The primary key cannot have a NULL value.

Domain Integrity

Domain integrity refers to the range of valid entries for a given column. It ensures that there

are only valid entries in the column.

Referential integrity

Referential integrity ensures that for every value of a foreign key, there is a matching value of

the primary key.

5.4 Keys

Enforcing data integrity ensures that the data in the database is valid and correct. Keys play

an important role in maintaining data integrity.

The various types of keys that have been identified are the

 Candidate key

 Primary key

 Alternate key

 Composite key

 Foreign key

Candidate key

It is important to have an attribute in a table that uniquely identifies a row is called a

candidate key. This attribute has values that are unique. Consider the table airport.

RDBMS Concepts and Oracle 8i

57

Airport

Airlineno SourceName DestinationName

023451 London India

023452 Newyork Tokiya

023456 Madurai Bangalore

The value of the attribute Airlineno is unique in every row. So this is called as candidate key.

This is also called surrogate key.

Primary Key

The candidate key that you choose to identify each row uniquely is called the primary key. In

the table Employee, if you choose Empid# to identify rows uniquely, Empid# is the primary

key.

Employee

Empid# Empname Salary

1437 Kalaiselvi 5000

1337 Meena 5000

1137 Diana 5000

Alternate key

A candidate key that is not chosen as a primary key is an alternate key. In the table Purchase

If you choose Serial# as the primary key, Itemcode is the alternate key. It is important that

you understand that a primary key is the only sure way to identify the rows of a table. Hence,

an alternate key may have the value NULL. A NULL value is not to be permitted in a primary

key since it would be difficult to uniquely identify rows containing NULL values.

RDBMS Concepts and Oracle 8i

58

Purchase

Serial# Itemcode Price

01437 I454 500

01438 I667 550

01439 I777 200

Composite Key

In certain tables, a single attribute cannot be used to identify rows uniquely and a

combination of two or more attributes is used as a primary key. Such keys are called

composite keys.

Consider the following table, customer, which is used to maintain the purchases made by

various customers.

Customers

Custcode Productcode Qty

c0147 P454 50

c0148 P777 55

c0147 P777 20

You can see all values are not unique for any of the attributes. However, a combination of

Custcode and Productcode results in all unique values. Hence, the combination can be used

as a composite primary key.

Foreign key

When a primary key of one table appears as an attribute in another table, it is called the

foreign key in the second table. A foreign key is used to relate two tables.

Consider the tables, department and staff.

RDBMS Concepts and Oracle 8i

59

Department

Deptcod

e
Name HOD

CSC COMPUTER SARAVANAN

EEE ELECTRONIC MATHU

EEC ELECTRICAL BALAMURUG

A

Staff

Staffcode Deptcode Name

S345 CSC DIANA

S346 EEC KALAI

S347 EEE MEENA

Since deptcode is unique in the department table, you can choose it as a primary key. Since it

apperas in the staff table as an attribute, it will be the foreign key in the staff table. You must

ensure that the values of the foreign key match with any one value of the primary key.

You can use the following conventions to represent the keys in the table structure.

Fk – Foreign key

Pk – Primary key

 Department

 Deptcode (Pk)

 Name

 HOD

 Staff

 Staffcode (Pk)

 Deptcode (Fk)

 Name

RDBMS Concepts and Oracle 8i

60

5.5 Short Summary

 Enforcing data integrity ensures that the data in the database is valid and correct. Keys

play an important role in maintaining data integrity.

 Rules of RDBMS are Information Rule, Guaranteed Access Rule, Systematic Treatment of

Null Values, Active On-Line Catalog Based on the Relational Model, Comprehensive

Data Sub-language Rule, View Updating Rule, High Level Inserts, Update and Delete,

Physical Data, Independence, Logical Data Independence, Integrity Independence,

Distribution Independence and Non-subversion Rule.

 The various types of keys that have been identified are the

• Candidate key

• Primary key

• Alternate key

• Composite key

• Foreign key

5.6 Brain Storm

1. What are the various types of keys we used in RDBMS?

2. Why we need keys?

3. What is Data integrity?

4. Explain about the different categories of integrity?

5. Explain the rules of RDBMS?

RDBMS Concepts and Oracle 8i

61

Lecture 6

Client-Server Architecture

Objectives

 After completing this lesson, you should be able to do the following

 Discuss about client server architecture

 Describe the Client and server parts.

 Describe about server and types of server

 Describe about advantages of client/server concepts

 Describe the multithreaded server architecture

RDBMS Concepts and Oracle 8i

62

Coverage Plan

Lecture 6

6.1 Snap shot

6.2 Client server architecture

6.3 Clients

6.4 Servers

6.5 Types of servers

6.6 Multithreaded server architecture

6.7 Advantages of client/server computing

6.8 Short summary

6.9 Brain Storm

RDBMS Concepts and Oracle 8i

63

6.1 Snap Shot

In this session we discuss about the client/server architecture and also we discuss about the

types of client/server architecture concepts, and its usage. In this session we also discuss

about server and types of server. We describe about multithreaded server architecture.

Discuss about the pros and cons of client/server architecture.

6.2 Client-Server Architecture

Client/server computing uses local processing power-the power of the desktop platform. A

simple definition of client/server computing is that server software requests for data from

client manipulates the data and presents the results to the user or, acting as a server, sends the

results to the client that requested it. To make it sound more technical: most of the application

processing is done on a programmable desktop computer, which obtains application services

from another computer in a master/slave configuration.

The emphasis of client/server computing is not hardware. The hardware components have

been around for quite a while. While the hardware does indeed deserve some attention, the

major focus of this book will be the technology that makes client/server computing possible-

the software.

Client/server computing provides Information Systems (IS) professionals with options by

allowing applications to be segmented into tasks. Each task can be run on a different

platform, under a different operating system and with a different network protocol. Each task

can be developed and maintained separately, accelerating application development. Data can

be placed closer to the user. Users can access their data with a comfortable interface and tools

for manipulating that data into meaningful information. Suddenly users are able to do more

for themselves, rely less on IS for assistance, and receive quick turnaround time for

applications requested of IS. The end result is more efficient use of existing equipment,

increased effectiveness of future spending, and more productive workers.

Application processing performed on more than one machine in a network may be either

distributed computing or cooperative processing. Distributed computing partitions the data

between two or more computers, which may be geographically dispersed. The user has

transparent access to the data. Cooperative processing splits an application’s functions

RDBMS Concepts and Oracle 8i

between two or more computers in a peer-to-peer relationship. Most client/server network

structures are based on distributed access, not distributed computing. Client/server

architecture uses a master/slave configuration where processing may be performed by both

the master and the slave.

The use of open systems (hardware, software, operating systems, databases, and networks)

enhances client / server computing. By adhering to standards, open hardware and software

can provide interoperability and portability. Open systems offer IS greater flexibility in

linking divergent technologies. However, in some cases there are multiple standards and in

others, none at all.

While this new technology seems very straightforward, it is actually more complex than the

technology it is replacing. Even if all the pieces adhere to standards, multiple components

must be integrated and managed. The network and all its nodes are treated as “the computer.:

Department LAN-based systems become part of the enterprise-wide network. Before changes

are made to departmental systems, impact on the enterprise-wide system must be identified

and resolved.

Before an organization ventures into the world of client/server computing, an application’s

functions should be reviewed. This breakdown parallels the division of duties in

client/server computing.

 Client Server
 Keystrokes

64

 Displays

 Query language architecture

 Client Server

 Keystrokes

 Processed
 Results

Presentation Logic

Application Logic

DBMS

Presentation Logic

Application Logic

DBMS

 Original Client/server applications

 Client Processed SQL Server

RDBMS Concepts and Oracle 8i

 Requests

65

 Processed
 Results

Distribution of processing in client/server model

The last sections discussed about the database and the system that is required to operate on

the database and the most popular system of today i.e., the RDBMS.

The RDBMS acts as a very good interface between you and the database and processes data

as per your instructions. Instructions come to the RDBMS by way of commands and other

interface specific operations. The RDBMS performs the following two distinct operations or

tasks when you operate with it:

• Gets the commands from you using a friendly user interface and displays the results

through friendly reporting

• Processes the commands given by you and processes data subsequently based on the

commands

The Fig illustrates these operations of the database system.

 RDBMS TASK #2

 RDBMS TASK #1

 DATABASE

 YOU

Figure 1 Different operations for a database

Task #1 interacts with the user and receives commands through a highly user-friendly

interface, sends the commands to task #2 and displays the results got from task #2 with

Application Logic Application Logic

DBMS Presentation Logic

RDBMS Concepts and Oracle 8i

66

highly user-friendly reporting facilities. Task #2 processes the commands and as per the

instructions, processes the data and sends the results to the task #1.

This way of processing where the overall job processing is done through two processes, one

working as a front-end and other working as a back-end is called Client-Server Model and the

database system that works on this architecture is called Client-Server System. Task #1 is

called Client because it always requests for the command to be processed and it works as a

front-end in the whole system. Task #2 is called Server because it serves the requests of task

#1 by way of processing the commands given.

Clients always interact with the end-user and servers always interact with the database files

and the vice-versa is not possible. The client and the server interact with each other to

effectively do the database processing as requested by the end-user.

6.3 Clients

The client or the front-end is usually the application that interacts with the end-user through

the keyboard, display and pointing device such as mouse. The client portion has no data

access responsibilities. It concentrates on requesting, processing and presenting the data

managed by the server portion. The client workstation can be optimized for its job. For

example, it might not need large disk capacity or it might benefit from graphic capabilities.

Client deals with user interface and data presentation.

The client hardware is the desktop machine that runs client software. It could be a micro or a

workstation. The client hardware has to be robust enough to support the presentation

requirements and the client based processing of the application.

The client software formulates data requests and passes the requests to the network software.

This software sends the requests to the server, accepts the results from the server and passes

the results back to the client software. The client software may perform some application

logic on the results of the request before passing it on to the presentation component of the

software.

The presentation component produces the interface that the user views and interacts with. It

is often, but not always, a graphical user interface. GUIs provide a graphic-oriented

presentation front-end to applications and provide (or simulate) multitasking processing (the

RDBMS Concepts and Oracle 8i

67

ability to run two or more applications at the same time). The major windowing

environments are Windows from Microsoft, Presentation Manager from IBM, Motif from

Open System Foundation (OSF), and OpenLook from USL.

For those who have not seen or used a windowed environment: Using a mouse as a pointing

device, users select options by positioning the cursor on the item of choice and clicking

(pressing a button on the mouse). Options are displayed as icons or lists. If a user must

choose from a valid list of values, a scrollable list box appears, the user scrolls through the list

until the choice is highlighted and then clicks. The user can toggle between multiple tasks and

/ or programs. Each task/program is in its own window and the user can position the

windows so that they are side-by-side or overlayed. Every effort is made to reduce keyboard

use. The interface hides most, if not all, of the requirements for data retrieval and system

administration from the user.

There is also an operating system running on the client hardware, which may or may not be

the same as the server’s operating system. The client operating system must be robust enough

to support the presentation processing and application logic processing required for the

applications. Each of the major windowing environments was designed for a particular

operating system. Windows runs under DOS, Presentation Manager under OS/2, and Motif

and OpenLook under UNIX.

There is also communications software running on the client hardware. The client-based

network software handles the transmissions of requests and receives the results of the

requests. However, individual network operating systems do not support all available client

and server operating systems.

The client may also be executing runtime support for applications generated with

client/server development tools. Using the development tool, the application logic is

specified and partially executable code is generated. The generated code is executed by the

client’s runtime version of the software.

In some cases, a client is actually a server acting as a client (then the server is called an agent)

by requesting data from another server.

6.4 Servers

RDBMS Concepts and Oracle 8i

68

The server portion runs the RDBMS software and handles the functions required for

concurrent, shared database access. The server portion receives and processes the commands

originating from the client applications. The computer that manages the server portion can be

optimised for its duties. It can have large disk space and fast CPUs.

A server is the machine that runs data management software that has been designed for

server functionality. Compared to a desktop micro, server hardware has increased memory

capabilities; increased storage capabilities; increased processing power, including, in some

cases, parallel processors, improved cycle times; and improved reliability with built-in

reliability features, such as uninterruptible power supply, fault tolerance, and disk mirroring.

When evaluating server hardware, the following measures should be kept in mind:

• Reliability. How often does it fail? What is the mean time between failures?

• Availability. How quickly does the system come back into service after a failure? To

assure high availability, some systems have self-healing routines, continuous processors,

fault-tolerant hardware, alarms to highlight problems before they become serious and

continuous functioning in a reduced configuration. Some can be rebooted from remote

sites.

• Flexibility and scalability. How easily can the server be expanded as processing needs

grow?

 A server has operating system software, data management software, and a portion of the

network software. The operating system has to interact reliably with network software and be

robust enough to handle server technology.

The data management software responds to requests for data retrieves, updates, and stores

data. Relational databases have become the de facto standard structure and SQL the de facto

standard data access language. Gateways to non-relational data sources are offered by most

major vendors of server DBMS software, as well as third-party vendors. Server DBMS

software incorporates many of the services taken for granted in mainframe-based

applications, such as backup and recovery routines and testing and diagnostic tools.

RDBMS Concepts and Oracle 8i

Two of the keys to successful client/server applications are the separation of presentation

management from other application services and the distribution of application logic between

the client and the server. In most cases, the distribution of application logic is determined by

the developer when the application is designed or installed. In some cases, this split can be

determined by the application software, based on current resources, at runtime.

Client Functions Server Services

GUI File, print, database server

Distributed application processing Distributed application processing

Local application E-mail

E-mail Communications

Terminal emulation Network management

 Resource management

 Configuration management

69

 I CLIENT SERVER

 II CLIENT SERVER

 III CLIENT SERVER DATABASE

Figure 2 Multi-User Database environment with Client-Server Architecture

6.5 Types of Servers

Every client working in the two-task architecture requires a server to process the commands

and the data on it’s behalf. While working on this kind of a setup, it is possible to optimize

the performance by making a server to process the requests of more than one client. This

optimization can be realized when multiple clients try to process the data in a centralized

database using their own servers.

RDBMS Concepts and Oracle 8i

70

In Figure 2 the server in each case is the RDBMS server that services the requests coming from

each client and each server acts as a dedicated one for each client. This client-server

architecture is also called dedicated client-server architecture.

When multiple clients get their requests serviced by a single server it becomes multi-threaded

client-server architecture and the server servicing in that environment is a called multi-threaded

server. (Figure 3)

 The six types of servers are:

• File server
• Application server
• Data server
• Compute server
• Database server
• Communication server

Their difference are based on where data is handled and how it is transferred.

File server

File servers manage a work group's applications and data files, so that they may be shared by

the group. File servers are very I/O oriented. They pull large amounts of data off their

storage subsystems and pass the data over the network. When data from the file is requested,

a file server transmits all records of a file and the entire index to the client. The client either

selects records(based on query criteria) as they are received or loads the whole file and its

index into memory and then reviews it. File servers require many slots for network

connections and a large capacity, fast hard disk subsystem.

File locking is handled by locking the entire file or by locking byre ranges. There is no

differentiation between read locks and write locks at this level. When multiple users access

Shared files, the file server engine checks for contention. If it detects contention at the file

lock level, it waits until the resource is free.

There can be no scheduling multiple users, no cache management, no lock manager, and

minimal concurrency control in the DBMS sense because there is no single engine to which all

the required information is available. These DBMS like features are usually handled by the

client software which anticipates the best way to process the data. Unless each data file is

RDBMS Concepts and Oracle 8i

71

locked for exclusive use and some client side indexing technique is used, all data must be

moved across the network before filtering, sort, or merge operating can be applied. This

situation forces heavy network traffic.

Two techniques used to minimize the amount of data that passes over the network are:

Organizing data so that the data needed by a particular application request is stored in a

single contiguous block.

Storing copies of data accessed by more than one user to help with concurrency problems.

Of course, these techniques require developers to build integrity and synchronization

handling into the processing of the application.

Application Server

An application server is a machine that serves as a host replacement (and in some cases

actually is a host.). when applications are downsized from a host, one option is to install the

applications on a smaller machine that runs the same software and to hook all the users to the

new box. This process requires no modifications to the host based application software. For

client server applications that are classified as host based the host is the serve to the GUI

based clients, as illustrated in Figure 8.3

Data Server

A data server is data oriented and used only for data storage and management, as illustrated

in Figure 8.4. a data server is used in conjunction with a compute server and may be used by

more than one compute server. A data server does not perform any application logic

processing). The processing done on a data server is rule based procedures, such as data

validation, required as part of the data management function.

Data servers performs multiple searches through large amounts of data and frequently

update massive tables. These tasks require fast processors, large amounts of memory, and

substantial hard disk capacity. However, for the most part, these computers send relatively

small amounts of data across the network.

RDBMS Concepts and Oracle 8i

72

Compute Server

A compute server passes client requests for data to a data server and forwards the results of

those requests to clients Compute servers may perform application logic on the results of the

data requests before forwarding data to the client.

Compute servers require processors with high performance capabilities and large amounts of

memory but relatively low disk subsystem capacity and throughput.

By separating the data from the computation processing, and organization can optimize its

processing capabilities. Since a data server can serve more than one compute server, compute

intensive applications can be spread among multiple servers.

Database Server

This is the most typical user of server technology in client server applications. Most if not all,

of the applications is run on the client. The database server accepts request for data, retrieves

the data from its database (or makes a request for the data from another node), and passes

the results of the request back to the client. Compute servers working with data servers

provide the same functionality.

Using a database server or a combination of data and compute servers, the data management

functions on the server and the client program consists of application specific code as well as

presentation logic. Because the database engine is separate from the client, the disadvantages

of file servers disappear. Database servers can have a lock manager, multi-user cache

management, and scheduling and thus have no need for redundant data.

Data base and data compute servers improve request handling by processing a SQL client

request and sending back to the client only the data that satisfies the request. This is much

more efficient in terms of network load than a file server architecture, where the complete file

is often sent from the server to the client.

Because SQL allows records to be processed in sets, an application can, with a single SQL

statement, retrieve or modify a set of server database. Older database system have to issue

separate sequential requests for each desired record of each of the base tables. Because SQL

RDBMS Concepts and Oracle 8i

can create a results table that combines, filters, and transforms data from base tables,

considerable savings in data communications are realized even for data retrieval.

The requirements foe these servers are a function of the size of the database, the speed with

which the database must be update, the number of users, and the type of network used.

Communication Server

Communication servers provide gateways to other LANs networks, midrange computers,

and mainframes. They have relatively modest system requirements, with perhaps the

greatest demands being those for multiple slots and fast processors to translate networking

protocols.

6.6 Multi-Threaded Server Architecture

Multi-threaded servers improve performance in database processing because they reduce the

number of processes and the corresponding load to the CPU. In a multi-user database

environment, the clients and servers are all individual processes to the computer system and

it is always recommended that the RDBMS is configured to work with Multi-threaded

servers. The following figure explains the multi-threaded server architecture.

 I CLIENT

 II CLIENT SERVER

 III CLIENT

 Database

Figure 3 Multi-threaded Client Server Architecture

73

RDBMS Concepts and Oracle 8i

74

Concept of Multi-threading

Multi-threaded server keeps track of the jobs submitted by one or more clients and switches

context between the jobs through an internal scheduling. The job scheduling is usually a pre-

emptive one which means the server executes a client’s job request for a definite capsule of

time and the job gets completed in many instances. In the case of the expiry of the time

capsule allotted, the server keeps the job’s status as of that instance of time in the process

stack and switches to the next client’s job waiting in the queue. When the job thus pre-empted

gets it’s next chance, the server resumes the execution from the point where it left in the

previous instance. The job switch is so quick that the client does not realise it is waiting and

also the client gets a feeling that it has a dedicated server for itself. The word multi-threading is

used because individual job status is maintained like a thread inside the server process. The

RDBMS of modern age works on Client-Server architecture and works on multi-threaded

server technique explained above.

A thread is the smallest unit of execution that the system can schedule to run; a path of

execution through a process.

6.7 Advantages of Client-Server Computing

Client-Server setup facilitates a better planning and allocation of resources when you want to

implement a computerized business solution. With Client-Server computing, it is a lot easier

to access information. The computing environment can be heterogeneous with the best of the

operating systems, languages and the computing platforms and the data access to the end-

user can still be transparent and distributed. Operations of a corporate business setup can be

widespread and the location can no longer be a constraint.

In a nutshell, the advantages of Client-Server computing are as follows:

• Access to more information is a lot easier

• Investments can be protected against obsolescence

• Planned and marginalised investments

• Free of processor, OS and software tool knowledge and operations dependencies

• Partitioning of applications

• Enterprise-wide transparent resource sharing

• Client/Server Computing is Easily Implemented

RDBMS Concepts and Oracle 8i

• Current Desktop Machines Are Sufficient

• Minimal Training Is Required

• All Data Are Relational

• Development Time Is Shorter

Implementing distributed remote data sharing in a transparent way can be done using a

client-server setup. The following figure illustrates this further.

C1 WIDE AREA NETWORK

 M/C I WIRELESS

 C2 S1 S2 S3 S4

 M/C II M/C IV M/C V M/C VI

 M/C VII

C3 LOCATION II LOCATION III COUNTRY II

COUNTRY I

 M/C III (LOCATION

Figure 4 Wide Area Network

In the above figure, the client-server setup is explained in a massive wide-area network. Wide-

area network spreads across regions and countries and taps the resources through

communication links including telephone lines, satellite communication network. Through

proper protocols or arrangements, the machines and the clients running in those machines

can interact with servers of their choice anytime and anywhere. The servers could be any

RDBMS and the machines running those servers could be from multiple vendors like SUN,

HP, IBM and so on.

Servers can also share multiple clients and clients can run on PCs in bitmapped GUI

environments. Servers can run on Super-mini machines or even mainframes. Together what

you achieve is the highest utilization of the resources transparently in an enterprise-wide

network. RDBMS of modern age are designed to take advantage of client-server computing.

Examples of client-server RDBMS that run on a variety of platforms include SQL SERVER,

Oracle, Sybase, INFORMIX, Ingres and so on.

75

RDBMS Concepts and Oracle 8i

76

6.8 Short Summary

 Client/server computing is that server software requests for data from client manipulates

the data and presents the results to the user or, acting as a server, sends the results to the

client that requested it.

 Client software sends the requests to the server, accepts the results from the server and

passes the results back to the client software.

 A server has operating system software, data management software, and a portion of the

network software. The operating system has to interact reliably with network software

and be robust enough to handle server technology.

 Dedicated client-server architecture is the server in each case is the RDBMS server that

services the requests coming from each client and each server acts as a dedicated one for

each client.

6.9 Brain Storm

1. Explain about client/server computing?

2. What is client?

3. What is server?

4. Differentiate the client/server architectures?

5. Mention types of Servers.

6. Explain about multithreaded server architecture?

RDBMS Concepts and Oracle 8i

77

Lecture 7

Clients

Objectives

 After completing this lesson, you should be able to do the following :

 Discuss about the Client concepts.

 Describe the details of open client and front-end client.

 Describe the features of ODBC.

 Describe about CUI and GUI concepts.

 Differentiate the CUI clients and GUI client concepts.

RDBMS Concepts and Oracle 8i

78

Coverage Plan

Lecture 7

7.1 Snap shot

7.2 Front ends

7.3 Open clients

7.4 ODBC support

7.5 Character based clients

7.6 GUI based clients

7.7 Short summary

7.8 Brain Storm

RDBMS Concepts and Oracle 8i

7.1 Snap Shot

In this session we discuss about the client concepts for this we deal the front-end clients, open

clients, character-based clients and graphical based clients. In this lecture we deal the Open

database connectivity concepts. We differentiate the character-based and graphical based

clients.

7. 2 Front-ends (Clients)

Clients act as front-ends of the data processing system setup and they deal with the user-

interface and applications which are developed to present data better and to do data entry,

validation and manipulation with a friendly interface. Front-ends, as their names indicate act

closely with the end-users and hence they offer excellent user-friendly interfaces to accept

input commands and data and to display results in the required formats. A typical client

application interface is presented in the following figure:

Figure 1.6 : Client Application Interface

The above figure illustrates an order entry application and has required fields which are

entered with proper values by the user. The application is also built with validation

constructs to check for the validity of the data entered by the user. The interface is intuitive

and helps the user in understanding the application better by presenting a friendly entry

format.

Front-ends are offered by all vendors who offer RDBMS products. Front-ends are also offered

by independent third-party vendors. While front-ends supplied by the RDBMS vendors

79

RDBMS Concepts and Oracle 8i

80

usually talk to their own RDBMS servers, front-end tools offered by third-party vendors talk

to a variety of RDBMS servers.

7.3 Open Clients

Open front-ends or client tools are those who can connect to any RDBMS and exchange

information. The implementations of those clients are such that separate modules (Also

referred to as Drivers) are built in to extend support for multiple RDBMS connectivity. Front-

ends of today’s technology are all Open Clients. Popular open clients are PowerBuilder, Oracle

Forms / Reports, VisualBasic and so on.

7.4 ODBC Support

Microsoft Corp., USA has devised interface standards for database connectivity from open

front-ends, which is called Open Database Connectivity. 8888888 With ODBC in picture, a

front-end application, which wants to talk to a specified RDBMS server, need not have the

connectivity pre-defined before writing the application. The Open Database Connectivity

(ODBC) interface allows applications to access data in database management systems (DBMS)

using Structured Query Language (SQL) as a standard for accessing data.

The interface permits maximum interoperability — a single application can access different

database management systems. This allows an application developer to develop, compile,

and ship an application without targeting a specific DBMS. Users can then add modules

called database drivers that link the application to their choice of database management

systems.

7.5 Character-based Clients

Character-based Clients work on dumb terminals and are usually tied tightly with an RDBMS

server and are not of Open Client kind. In Character-based setup, the interface screen

resolution is one character and all the presentations are drawn using one or other characters.

Character-based Clients are slowly loosing demand with the advent of Windows based

environment. Character-based Clients are descriptive in nature and do not offer extensive

visual interface and do not deal with graphical representation of information.

RDBMS Concepts and Oracle 8i

7.6 GUI based Clients

Graphical User Interface (GUI) based Clients are Windows based and work on bit-mapped

interface rather than character-based one. In a bit-mapped screen, the interface resolution is a

bit or a pixel. This facilitates a greater resolution on the Computer monitor and as a result,

pictures and other graphical visual presentations are possible. GUI based clients, as their

name suggest, take advantage of the graphical native look-and-feel environment and give a

lot of intuitive features to the users including multi-media and video motion picture interface.

Images with 3D effect, command buttons, pick-and-choose objects, selection by clicking over

the region by mousses are some of the features of a GUI based interface.

GUI based Clients address closer to real-world application situations and help user to work in

a more intuitive and interactive manner. Following figure presents one such GUI based Client

interface.

Figure 1.7 GUI Based Clients

GUI based clients are of non-procedural type which means programming efforts are greatly

reduced. Visual possibilities improve intuitive learning and the GUI based front-ends could

very well sit over a desktop and access information through a Workgroup environment. GUI

based clients are fast catching up and becoming the de facto standards of operations.

81

RDBMS Concepts and Oracle 8i

82

7.7 Short summary

 Front-ends indicate act closely with the end-users and hence they offer excellent user-

friendly interfaces to accept input commands and data and to display results in the

required formats.

 The implementations of those clients are such that separate modules are built in to extend

support for multiple RDBMS connectivity. Front-ends of today’s technology are all Open

Clients.

 ODBC is a library that acts as a middle ware between any client and any server and talks

in their native language.

 Character-based Clients work on dumb terminals and are usually tied tightly with an

RDBMS server and are not of Open Client kind.

 GUI based clients, as their name suggest, take advantage of the graphical native look-

and-feel environment and give a lot of intuitive features to the users including multi-

media and video motion picture interface.

7.8 Brain Storm

1. How graphical based clients are differing from character based clients?

2. Explain about front-end clients?

3. Explain the concepts of ODBC?

4. Define the open clients?

RDBMS Concepts and Oracle 8i

83

Lecture 8

Introduction to SQL

Objectives

 After completing this lesson, you should be able to do the following

 Discuss the Different generations of languages

 Describe about Structured query language

 How to logging to SQL and what is SQL * plus

 Understand how to create, alter a table and understand to manipulate with
data

 Discuss about Selecting data from a table

RDBMS Concepts and Oracle 8i

84

Coverage Plan

Lecture 8

8.1 Snap shot

8.2 Generation of languages

8.3 SQL

8.4 SQL command classification

8.5 Data types

8.6 Create, view, manipulate data

8.7 Short summary

8.8 Brain Storm

RDBMS Concepts and Oracle 8i

85

8.1 Snap Shot

In this session we learn about the generation of language and give example for each

generation. Discuss about the structured query language and SQL * plus. In this lecture we

describe about how to logging in to SQL * plus and how to operate the commands.

In SQL we have several command categories each categories have different type of

commands. We learn all these commands and we also learn about the data types of oracle.

8.2 Generation Of Languages

First Generation of Languages [Machine Language]

This is considered to be the First generation of Language. Every computer has its own

machine language, which is the only language understood by the computer. Originally,

programs were written in machine language. Machine language instructions are represented

by binary numbers i.e., sequences consisting of 0’s and 1’s.

For eg:- 001010001110

could represent a 12-bit machine language instruction. This instruction is divided into two

parts, an operation code(or op code) and an operand, e.g:-

p code Operand

001 010001110

The Op code specifies the operation (add, multiply, move….) and the operand is the address

of the data item that is to be operated on. Besides remembering the dozens of code numbers

for the operations, the programmer also has to keep track of the addresses of all the data

items. Thus programming in machine language is highly complicated and subject to error.

Also, the program is machine dependent, i.e good only for a particular machine since

different computers uses different machine languages.

Second Generation of Languages [Assembly Language]

RDBMS Concepts and Oracle 8i

86

The Second Generation of Computer Languages saw a difference in the development of

languages. Here, the sequences of 0’s and 1’s that serve as operation codes in machine

language are replaced by mnemonics (memory-aiding, alphabetic codes). Each assembly-

language instruction may have three parts, not all of which is required to be specified. The

first part is the label or tag. These are the programmer-defined symbols that give the address

of the instruction. Then follow the op code and the operand, as with the machine-language

instruction. Here the operands are symbolized ad hoc, in letters chosen by the programmers.

Third Generation of Languages [High-Level Languages]

The Third Generation of Language saw a very big change with the advent of high-level

languages where programming was made comparatively easier. These are called high-level

languages or compiler languages, since they require a special program called a compiler,

which translates programs written into machine language. The original program written in

high-level language is called as the source program, and its translation into machine language

is called the object program. Common high-level languages are FORTRAN, COBOL, BASIC,

etc.

Fourth Generation of Languages

Even-though third generation of languages such as C, BASIC brought in a new change in

programming, in order to use these languages one must understand the syntax and the logic

for writing codes and compiling them. The data that must be located and read must also be

specified since there is no way of automatically searching and retrieving the information. The

Fourth Generation language made this very simpler and easier by bringing out a very

English-like Language. Structured Query Language falls into this generation of computer

languages.

8.3 Structured Query Language (SQL)

SQL is a Structured Query Language and is the industry standard language to define and

manipulate the data in Relational Database Management System. In a database environment,

the interactions between the Client and the Server are only through SQL. This one-point

communication language in Client-Server architecture facilitates the database connectivity

and processing.

RDBMS Concepts and Oracle 8i

87

Structured Query Language is a simple English-like language. SQL is also pronounced as

“sequel” and consists of layers of increasing complexity and capability. End-users with little

or no experience in data processing can learn SQL features very quickly. It is a Fourth

Generation Language.

SQL was first introduced by IBM Research and was introduced into the commercial market

first by Oracle Corporation in 1979. A committee at the American National Standards

Institute has endorsed SQL as the standard language for RDBMS.

SQL provides the following functionalities:

• Creation of tables.

• Querying the exact data.

• Change the data structure and the data.

• Combine and calculate the data to get the required information.

Non-Procedural Language

SQL is a non-procedural language and is free of logic and procedural constructs. In SQL, all

we need to say is what we want and not how to go about it. It does not require the user to

specify the methodology for accessing the data. SQL processes sets of records rather than one

at a time. SQL language can be used by Database Administrators, application programmers,

decision support personnel and management.

SQL facilitates interaction by embedding SQL standard programming languages such as

COBOL, FORTRAN, C etc. through a variety of RDBMS tools like SQL * Plus, Report

Generators, Application Generators, Form Generators.

Database Access through SQL

SQL operates over database tables. Tables constitute tabular representation of data with data

residing in the form of a spreadsheet of rows and columns. Each row has a set of data items

and the items are called fields.

RDBMS Concepts and Oracle 8i

88

SQL * Plus

SQL Queries are sent to the Oracle RDBMS using the tool called SQL * Plus. This is the

principal CLIENT tool for ORACLE. It is an environment through which any interaction with

the database is done using SQL commands.

SQL * Plus program can be used in conjunction with the SQL database language and its

procedural language extension PL/SQL. SQL * Plus enables the user to manipulate SQL

commands and PL/SQL statements and to perform additional tasks such as to

• Enter, edit, store, retrieve and run SQL commands.

• Format and print calculations, query results in the form of reports.

• List column definitions for any table

• Access and copy data between SQL databases

Logging to Oracle

To enter into Oracle and interact with the database using SQL * Plus, a username and a

password must be given. Logging to Oracle can be done by using either the menu option or

by entering

Plus80w (From Oracle 8) in the Start-Run option.

It prompts the user to enter a username and a password. If the system is connected to multi-

user environment, the database alias name must be provided in the “Host String”.

The Database Administrator configures this database alias name.

The figure explains this:

RDBMS Concepts and Oracle 8i

89

Figure 8.1 Logging to Oracle

Shortcuts to starting SQL * Plus

While starting SQL* Plus, the username along with the password and the database alias (if

required) can be given. The username and the password must be separated by a slash (/). For

example consider a user called SCOTT and the password called TIGER.

If the user is connected to the personal database, SQL * Plus can be started by giving,

PLUS80W SCOTT/TIGER (or) SQLPLUS SCOTT/TIGER

If the user is connected to a network, SQL * Plus can be started by giving

PLUS80W SCOTT/TIGER@ORACLE

After this, the SQL prompt appears from where the commands can be entered and executed.

SQL Buffer

The area where SQL * Plus stores the most recently typed SQL commands or PL/SQL

commands is called the SQL Buffer. The command remains in the buffer until another

command is entered. Thus, if the same command or block has to be re-executed or edited, it

RDBMS Concepts and Oracle 8i

90

can be done without retyping the same. A detailed list of SQL * Plus commands are dealt

later.

Note: SQL* Plus commands are not stored in the SQL Buffer and hence may not be re-run.

8.4 SQL Command Classifications

Based on the type of action that each command performs, SQL commands can be broadly

classified as follows:

Classifications Description Commands

DDL

(Data Definition Language)

Is used to define the structure of

a table, or modify the structure

CREATE,ALTER,DROP,

TRUNCATE,RENAME

DML

(Data Manipulation

Language)

Is used to manipulate with the

data

INSERT,UPDATE,

DELETE

DCL

(Data Control Language)

Is used to restrict or grant access

to tables

GRANT,REVOKE

TCL

(Transaction Control

Language)

Is used to complete fully or undo

the transactions

COMMIT,SAVEPOINT,

ROLLBACK

Queries Is used to select records from the

tables or other objects

SELECT

Before discussing about creating tables, a detail description about datatypes is dealt with.

8. 5 Datatypes

Each literal or column value manipulated by Oracle has a datatype. A value’s datatype

associates a fixed set of properties with the value. Broadly classifying the datatypes, they can

be of two types:

• BUILT-IN

• USER-DEFINED (dealt in a later chapter)

RDBMS Concepts and Oracle 8i

91

Built-in datatypes are predefined set of datatypes set in Oracle. Based on the type of data that

can be stored, built-in datatypes can be classified as

• Character Datatypes

• Numeric Datatype

• Date Datatype

• Raw Datatype

• Long Raw Datatype

• Lob Datatype

Character Datatypes

Char(n)

Char datatype is a fixed length character data of length n bytes. Default size is 1 byte and it

can hold a maximum of 2000 bytes. Character datatypes pad blank spaces to the fixed length

if the user enters a value lesser than the specified length.

Syntax

Char(n)

Example:

X char (4) stores upto 4 characters of data in the column X.

Varchar2(size)

Varchar2 datatypes are variable length character strings. They can store alpha-numeric

values and the size must be specified. The maximum length of varchar2 datatype is 4000

bytes. Unlike char datatype, blank spaces are not padded to the length of the string. So, this is

more preferred than character datatypes since it does not store the maximum length.

Syntax

Varchar2(Size)

Example:

X varchar2 (10) stores upto 10 characters of data in the column X.

 Numeric datatypes

RDBMS Concepts and Oracle 8i

92

Number

The number datatypes can store numeric values where p stands for the precision and s stands

for the scale. The precision can range between 1 to 38 and the scale ranges from –84 to 127.

Syntax

Number (p, s)

Example:

Sal number – Here the scale is 0 and the precision is 38

Sal number(7) – Here the scale is 0 and the number is a fixed point number of 7 digits

Sal number(7,2) – Stores 5 digits followed by 2 decimal points.

DATE datatype

Date datatype is used to store date and time values. The default format is ‘DD-MON-YY’. The

valid data for a date datatype ranges from January 1, 4712 BC to December 31, 4712 AD. Date

datatype stores 7 bytes one each for century, year, month, day, hour, minute and second.

RAW Datatype

RAW(n)

RAW datatype stores binary data of length n bytes. The maximum size is 255 bytes.

Specifying the size is a must for this datatype.

Syntax

Raw(n)

LONG Datatype

Stores character data of variable length upto 2 Gigabytes(GB) or 231 – 1.

LONG RAW Datatype

RDBMS Concepts and Oracle 8i

93

Stores upto 2 Gigabytes(GB) of raw binary data. The use of LONG Values are restricted. The

restrictions are :

• A Table cannot contain more than one LONG column

• LONG columns cannot appear in Integrity constraints (dealt later)

• They cannot appear in WHERE, ORDER BY clauses of SELECT statements

• Cannot be a part of expressions or conditions

• Cannot appear in the SELECT list of CREATE TABLE as SELECT statement.

LOB Datatypes

In addition to the above datatypes, Oracle 8 supports LOB datatypes. LOB is the acronym for

LARGE OBJECTS. The LOB datatypes stores upto 4 GB of data. This datatype is used for

storing video clippings, large images, history documents etc. LOB datatypes can be

 CLOB Character Large Objects (Internal LOB)

 BLOB Binary Large Objects (Internal LOB)

 BFILE Binary File (External LOB)

The LOB datatypes store values, which are called locators. These locators indicate the place

where the objects are stored. The location can be out-of-line or in an external file like CD-

ROM. In order to manipulate the LOB type of data, DBMS_LOB package is used.

8.6 Create, View, Manipulate Data

8.6.1 Data Creation through SQL

This section deals with creation of tables, altering its structure, inserting and retrieving

records and querying complex data using SQL.

Using the CREATE TABLE Command

Oracle Database is made up of tables that contain rows (horizontal) and columns (vertical).

Each column contains a data value at the intersection of a row and a column. The table

definition contains the name of the attribute (property or field) and the type of the data that

RDBMS Concepts and Oracle 8i

94

the column contains. To create a table, use CREATE TABLE command. CREATE command is

used to define the structure of a table or any object.

Syntax:

CREATE TABLE <tablename> (column1 datatype,

 column2 datatype,…);

Here, tablename refers to the name of the table or entity, column1 is the name of the first

column, column2 the name of the second column and so on. For each column there must be

an appropriate datatype which describes the type of data it can hold. The statement is

terminated by a semi-colon.

The following example illustrates the creation of a table.

Example 2.1

Create table EMPLOYEE (Empno NUMBER,

 Empname CHAR(10),

 Doj DATE

);

This would display:

Table created.

In the above example, an entity called EMPLOYEE is created. It contains columns named

Empno that can hold numeric data, Empname that contains character data and Doj that

contains the date type of data. Table names are case-insensitive.

The structure of the data would look like:

Name Type

EMPNO NUMBER

EMPNAME CHAR(10)

DOJ DATE

RDBMS Concepts and Oracle 8i

95

While creating tables, consider the following points:

• Tablename must start with an alphabet

• Tablename length must not exceed 30 characters

• No two tables can have the same name

• Reserved words of Oracle are not allowed

8.6.2 Viewing the Table structure

After creating the table, viewing the structure can be done using DESCRIBE followed by the

name of the table.

Syntax:

DESC[ribe] <tablename>

Example:

DESC EMPLOYEE

The output would look like:

Name Type

EMPNO NUMBER

EMPNAME CHAR[10]

DOJ DATE

Using the ALTER TABLE Command

A table’s structure can be altered using the ALTER Command. The command allows the

structure of the existing table to be altered by adding new columns or fields dynamically and

modifying the existing fields’ datatypes. Using this command, one or more columns can be

added.

Syntax:

RDBMS Concepts and Oracle 8i

96

Alter table <tablename> add (column1 datatype, column2 datatype …);

Alter table <tablename> modify (column1 datatype, column2 datatype …);

Example:

Consider the previous example where a new column called Salary is to be added.

ALTER TABLE employee ADD (salary NUMBER);

After this command is issued, it displays,

Table altered.

Alter command can be used to modify the existing datatype of a column to another datatype

or to change the column width. The next example illustrates this:

Example:

ALTER TABLE employee MODIFY (empname VARCHAR2 (20));

Here the number of characters that the column empname can contain is increased from 10 to

20. The maximum length of the value in empname column is 20.

Note: In the case of decreasing the data width, the column on which the width is going to decrease must not contain

any value. Whereas, in the case of increasing, there is no such restriction.

After altering the structure by adding a new column and modifying the data width, the

structure of the table would look like this:

Name Type

EMPNO NUMBER

EMPNAME VARCHAR2(20)

DOJ DATE

SALARY NUMBER

RDBMS Concepts and Oracle 8i

97

8.6.3 Removing Tables – DROP Command

Tables can be dropped the same way they are created. This command drops the data and the

structure is permanently removed from the database.

Syntax:

Drop table <tablename>;

Example:

DROP TABLE Employee;

This command removes the structure along with the rows from the database and displays the

message “Table Dropped”.

Using the TRUNCATE command

Unlike the DROP command, TRUNCATE command deletes all the records and does not

remove the structure.

Syntax:

Truncate table <tablename>;

Example:

TRUNCATE TABLE employee;

All the records in the employee table are deleted with its structure available in the database. It

displays “Table Truncated”.

8.6.4 Manipulating with the Data

After creating the table, data is entered using the Data manipulation statements. Insert

command is used to insert new records, the update command replaces the old value with the

new value and the delete command is used to delete records based on certain conditions.

RDBMS Concepts and Oracle 8i

98

Using INSERT Command

Insert command is used to add one or more rows to a table. The values are separated by

commas and the values are entered in the same ORDER as specified by the structure of the

table. Inserting records into tables can be done in different ways:

• Inserting records into all fields

• Inserting records into selective fields

• Continuous Insertions

• Inserting records using SELECT statement

Case 1:

Consider inserting records onto all the fields in the table.

Syntax:

Insert into <tablename> Values (value1, value2, value3…);

Here, the number of values must correspond to the number of columns in the table.

Example:

INSERT INTO Employee VALUES (1237,’kalai’,’10-MAR-2000’, 5000);

The message displayed will be:

1 row created.

This command inserts the record where the employee number is 1000, his name is Jack and so

on. Always character data must be entered within single quotes.

In the above example, the column called doj contains a date datatype. While inserting date

values, the values must be enclosed within quotes. The standard format of entering the date

values is ‘DD-MON-YY’.

RDBMS Concepts and Oracle 8i

99

Note: Any value other than mere number must be placed within single quotes. Otherwise, it treats the value as a

column name.

Case 2:

Consider inserting Values into Selective fields

Syntax:

Insert into <tablename>(selective column1, selective column2) Values (value1, value2);

Example:

INSERT INTO Employee (empno, empname) VALUES (1330,’saravanan’);

Displays the feedback as

1 row created.

Case 3:

Consider continuous insertion of records. In order to insert continuously, use “&”

(ampersand).

Syntax:

Insert into <tablename> Values (&col1, &col2, &col3…);

Oracle prompts the user to insert values onto all the columns of the table. The following

example illustrates this.

Example

INSERT INTO employee VALUES (&eno,'&name', '&doj',&sal);

Output will be:

Enter value for eno: 1247

RDBMS Concepts and Oracle 8i

100

Enter value for name: Meena

Enter value for doj: 10-jan-2000

Enter value for sal: 5000

old 1: insert into employee values(&eno,'&name',&doj,&sal)

new 1: insert into employee values(1247,'meena','10-jan-2000',5000)

1 row created.

Here, instead of enclosing the character values in quotes each time, it is enough if it is given

while using the Insert command. Now the same command can be re-executed by giving

/(slash) as long as this is the latest command that is there in the buffer.

Now, consider inserting records continuously for selective fields. This is similar to case 2.

Insert into <tablename>(selective column1, selective column2) Values (&col1, &col2);

The following example inserts records into the empno and empname columns.

Example:

INSERT INTO Employee (empno, empname) VALUES(&eno,’&name’);

Output

Enter value for eno: 1440

Enter value for name: Diana

old 1: insert into employee values(&eno,'&name')

new 1: insert into employee values(1440,'Diana')

1 row created.

Case 4:

Multiple Records can be inserted using a single Insert command along with Select statement.

This case is dealt after the section on Select Statement.

RDBMS Concepts and Oracle 8i

101

Note: Using Insert and Values combination, only one record can be inserted at a time .

Retrieving Records - Using the SELECT Statement

Retrieving data from the database is the most common SQL operation. A database retrieval is

called a query and is performed using SELECT statement. A basic SELECT statement contains

two clauses or parts:

Select some data (column name(s)) FROM a table or more tables(table name(s))

Retrieval of records can be done in various ways:

• Selecting all records from a table

• Retrieving selective columns for all records from a table

• Selecting records based on conditions

• Selecting records in a sorted order

Consider the first case of selecting all the records from the table.

Example

SELECT empno,empname,doj,salary FROM employee;

Here, all the column names are given in the SELECT clause. This can be further simplified by

giving ‘*’ as follows:

Example

SELECT * FROM employee;

This would display:

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10 – MAR – 2000 5000

1330 Saravanan

RDBMS Concepts and Oracle 8i

102

1247 Meena 10 – JAN – 2000 5000

1440 Diana

‘*’ indicates all the column names.

Note in the above display, there are no values entered in DOJ and Salary Column for the

employee 1001 and 1004. Here the values in these columns are considered to have NULL

values. Anytime it can be updated using the Update Command.

In the second case, the column names must be specified in the SELECT statement.

Syntax

SELECT col1,col2,.. FROM <tablename>;

Example

SELECT empname,salary FROM employee;

The records would be displayed as follows:

EMPNAME SALARY

Kalai 5000

Saravanan

Meena 5000

Diana

This statement retrieves the column values of empname and salary.

8.6.5 Conditional Retrieval

Conditional retrieval enables selective rows to be selected. while selecting rows, restriction

can be applied through a condition that governs the selection. An additional clause called

WHERE must be given along with the SELECT statement to apply the condition to select a

specific set of rows. The order of precedence first goes to the WHERE clause and the records

that match the condition are alone selected.

Syntax:

RDBMS Concepts and Oracle 8i

103

Select (column name(s)) FROM (table name(s)) WHERE condition(s) Consider selecting

employee records whose salary is equal to or greater than 3000. The query can be written as,

Example:

SELECT empno,empname,salary FROM employee where salary >=3000;

The records selected will be,

EMPNO EMPNAME SALARY

1237 Kalai 5000

1247 Meena 5000

Example:

SELECT * FROM employee WHERE salary=1000;

The display would be no rows selected since there are no records matching the condition

specified in the WHERE clause.

Retrieving Records in a sorted order

Records selected can be displayed either in ascending order or in descending order based on

the column specified. ORDER BY clause is used to perform this operation.

Syntax:

Select (column name(s))

FROM (table name(s)) WHERE condition(s)

ORDER BY <column name(s)>

Example:

SELECT * FROM employee ORDER BY empname;

This would display

EMPNO EMPNAME DOJ SALARY

1440 Diana

1237 Kalai 10 – MAR – 2000 5000

RDBMS Concepts and Oracle 8i

104

1247 Meena 10 – JAN – 2000 5000

1330 Saravanan

There is a difference in the display. This query displays all the records in the employee table

sorted in ascending order of the employee name. By default ascending is the order in which

the records are displayed. If the records need to be displayed in descending order, use DESC

along with the column name. For example,

SELECT * FROM employee ORDER BY empname DESC;

Here sorting is done in descending order. So the display will be totally different as shown

below:

EMPNO EMPNAME DOJ SALARY

1440 Saravanan

1247 Meena 10 – JAN – 2000 5000

1237 Kalai 10 – MAR – 2000 5000

1330 Diana

Sorting records can be done on more than one column. In this case, sorting is done on the first

column and then within that sorting is done on the second column. The following example

illustrates this.

Suppose that sorting is to be done on the salary column in ascending order and then within

that on the empname column in descending order.

SELECT empno,empname,salary FROM employee ORDER BY salary,empname DESC;

This sorts first the salary and within that the employee name which would look like:

EMPNO EMPNAME SALARY

1247 Meena 5000

1237 Kalai 5000

1440 Saravanan

1330 Diana

RDBMS Concepts and Oracle 8i

105

Note:DESC denotes descending order and this is not the same as DESC in SQL * Plus.

Copying the Structure with Records

If the structure of one table has to be copied on to another table along with the records, then

the Create table statement is used in combination with the Select statement. The structure

along with the records is copied on to the second table.

Syntax:

CREATE TABLE <tablename2> AS SELECT <columnlist> FROM <tablename1> [WHERE

<conditions>]

Example:

Consider creating a table called employee1 whose structure is the same as employee table. To

create this use,

CREATE TABLE employee1 AS SELECT * FROM EMPLOYEE;

Displays the feedback,

Table created.

The structure of the employee1 would be the same as the structure of employee table. The

records will also be the same. To view the records of employer table, use

SELECT * FROM employee1;

This would display

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10 – MAR – 2000 5000

1330 Saravanan

1247 Meena 10 – JAN – 2000 5000

1440 Diana

RDBMS Concepts and Oracle 8i

106

If only specific columns need to be copied use,

CREATE TABLE employee2 AS SELECT empno,empname FROM EMPLOYEE;

The statements given above create new tables called employee1 and employee2 respectively.

In the case of employee1 table, the structure, which exists in the employee table, is copied and

the records are inserted. In the case of employee2 table , two columns are copied from the

employee table with the records and the structure. The above statements can alternately be

written as

CREATE TABLE <tablename>

and

INSERT INTO <tablename> SELECT <columnlist> FROM <tablename> AS (explained in the

section on Inserting records using SELECT Statement).

Copying the Structure

The structure of one table can be copied on to another table without the records being copied.

In order to do this, along with the SELECT statement, add a WHERE clause which yields to

any FALSE condition. The following example explains this:

CREATE TABLE employee3 AS SELECT * FROM employee WHERE 1=2;

This statement creates a table called Employee3 whose structure is the same as Employee but

the records are not copied since WHERE clause evaluates to FALSE.

Inserting records using SELECT statement

Records can be selected and inserted from one table to another table using INSERT and

SELECT statement.

Syntax:

RDBMS Concepts and Oracle 8i

107

INSERT INTO <tablename> SELECT <columnlist> FROM <tablename> [WHERE

<conditions>];

Example

INSERT INTO employee3 SELECT * FROM employee WHERE salary >=2000;

The above example copies records from employee table to employee3 table where the records

meet the criteria specified in the WHERE clause.

Modifying data – Update Command

The UPDATE command is used to modify one or a set of rows at a time. UPDATE statement

consists of 2 clauses – UPDATE clause followed by a SET clause and an optional 3rd clause –

the WHERE clause. The WHERE clause specifies a conditon, which is optional.

UPDATE statement allows the user to specify the table name for which the rows are to be

modified. The SET clause sets the values of one or more columns as specified by the user.

UPDATE statement without a WHERE clause updates all the records in the table.

Syntax:

UPDATE <tablename>

SET <col1>=value,<col2>=value,..

WHERE <condition>

Example:

Consider the table employee2, add a column called deptno to this table as shown below.

ALTER TABLE employee2 ADD deptno NUMBER;

Before the update command is issued on issuing.

SELECT * FROM employee2;

RDBMS Concepts and Oracle 8i

108

This display will be:

EMPNO EMPNAME DEPTNO

1237 Kalai

1330 Saravanan

1247 Meena

1440 Diana

There are no values in the deptno column. Since INSERT is used to insert new records,

UPDATE performs the value updation.Now, consider the following UPDATE statement

UPDATE employee2

SET deptno=10;

This statement updates all the records of employee table with deptno as 10 and displays the

number of records that were modified. Here the display will be,

4 rows updated.

Example:

UPDATE employee2

SET deptno=20 WHERE empno >=1003;

The deptno column is updated for all the records that satisfy the condition specified in the

WHERE clause. After this command is issued, the select statement for this table would yield,

SELECT * FROM employee2;

EMPNO EMPNAME DEPTNO

1237 Kalai 10

1330 Saravanan 10

1247 Meena 10

1440 Diana 20

RDBMS Concepts and Oracle 8i

109

To update more than one column, separate the columns with a ‘,’ as illustrated below

UPDATE employee1

SET salary=6000,doj=’09-SEP-2000’ WHERE doj is NULL;

Here, the salary is updated to 6000 and the doj is changed to 09-SEP-2000 for employees

whose the date of joining is NULL. After updation, the selection from the table would yield,

EMPNO EMPNAME DOJ SALARY

1237 Kalai 10 – MAR – 2000 5000

1330 Saravanan 09 – SEP – 2000 6000

1247 Meena 10 – JAN – 2000 5000

1440 Diana 09 – SEP – 2000 6000

8.6.6 Removing Data – DELETE Statement

Delete statement removes the rows from the table. The command has a DELETE FROM

clause and an optional WHERE clause. The DELETE FROM statement names the table on

which the deletion operation is to be performed and the WHERE clause specifies the

condition.

Syntax:

DELETE FROM <tablename> [WHERE <condition>]

Example

DELETE FROM employee2 WHERE deptno=20;

This statement removes all the records from the employee2 table for which the deptno 20. The

following example removes all the records are from the table.

Example:

DELETE FROM employee2;

8.6.7 Working with Transactions

RDBMS Concepts and Oracle 8i

110

Transaction means a logical unit of work that would make sense only on the completion of all

the operations as a whole. This means that, either all the operations in the unit are completed

fully or none of them are completed. In Oracle, operations can be any Data Manipulation

Language statements. SQL offers two commands to simulate real-life transactions in the

database. The commands are:

• COMMIT

• ROLLBACK

COMMIT completes the transaction done by making changes permanently to the database

and initiates a new transaction. ROLLBACK reverts back the changes made and completes

the transaction. The following example illustrates this in a better way:

INSERT INTO <tablename> Values(……);

INSERT INTO <tablename> Values(……);

UPDATE <tablename> SET ……

COMMIT;

Displays

Commit complete.

All the changes are made permanently in the database. The two Insert statements and an

Update statement effect the changes and the commit completes the transaction.

Now , consider the following:

DELETE FROM <tablename>;

When this statement is issued, the records are deleted from the table. But if this is done

accidentally, records can be retrieved immediately after the DELETE statement by issuing the

statement:

ROLLBACK;

This statement reverts back the changes made to the table and the records are not deleted.

RDBMS Concepts and Oracle 8i

111

Note: All DDL,DCL statements perform an Implicit Commit.

Temporary Markers

Now, assume that after the DELETE statement is one INSERT statement is issued as given

below:

DELETE FROM <tablename> WHERE ….;

INSERT INTO <tablename> VALUES (……);

ROLLBACK;

Here, both the INSERT and the DELETE operations are un-done. In order to avoid this kind

of situations SAVEPOINTs are used. SAVEPOINTS are temporary markers that are used to

divide a lengthy transaction into a smaller ones. They are used along with ROLLBACK.

Syntax:

SAVEPOINT <savepoint id>;

where savepoint_id is the name of the savepoint. Multiple savepoints can be created within a

transaction. Re-phrasing the previous example,

DELETE FROM <tablename> WHERE <condition>;

SAVEPOINT s1;

INSERT INTO <tablename> VALUES (….);

ROLLBACK TO s1;

…..

In this case, only the deleted statements are rolled back as savepoint has been used after the

Delete statements.

Note: SAVEPOINTS can be used within transactions. After a transaction is completed, the same savepoints cannot be

used in the next transaction.

DCL Statements are dealt in the chapter on database objects.

RDBMS Concepts and Oracle 8i

112

Differences between Delete and Truncate

The following table illustrates the difference between Truncate and Delete

Truncate Delete

Deletes all the records Can delete all the records or selective rows alone.

 This is a DDL statement This is a DML statement

 Commits Implicitly Explicit commit is required and

 Hence ROLLBACK

 Hence Not possible can be used to rollback.

SQL * PLUS Commands

DESC Used to describe the structure of an

 object

SET PAGESIZE n Sets the Pagesize to n length

SET FEEDBACK [on/off] SQL displays the feedback for every

 statement that is successfully executed. By

turning it off, the feedback is not displayed on the

screen.

SET HEADING [on/off] In query displays, the heading of the

 column name is displayed. By turning it off,

the heading is not shown on the screen. It can be turned on

again.

SET LINESIZE x Sets ‘x’ number of lines to be displayed

 on the screen.

RDBMS Concepts and Oracle 8i

113

SET PAUSE on/off Pauses the display till the user presses

 <Enter> key.

/ Executes the latest command in the

 buffer.

8.7 Short Summary

 SQL is a Structured Query Language used for all RDBMS.

 SQL * Plus is a tool that is used to work with and the commands are executed.

 SQL* Plus statements are not stored in the buffer.

 DDL – Data Definition Language that defines the structure of an object

 They are CREATE, ALTER, DROP, TRUNCATE, RENAME

 DML – Data Manipulation Language that is used to Insert , Update and Delete records.

 INSERT, UPDATE and DELETE commands are called DML commands

 TCL – Controls the Transactions. They stand for Transaction Control Language

 They are COMMIT, ROLLBACK and SAVEPOINT.

RDBMS Concepts and Oracle 8i

114

8.8 Brain Storm

1. Which Generation SQL belong to?

2. What is SQL * Plus?

3. Columns cannot be added to an existing table

a. True b. False

4. While creating table we can insert records into it?

5. Can we drop a Column in a table?

6. How many records can be inserted using a single Insert command?

7. Using update command, can we update more than one column?

8. Using Alter table command, can we decrease the column width?

9. What is the difference between Delete and Truncate?

10. The statement that marks the end of a transaction is _____________

RDBMS Concepts and Oracle 8i

115

Lecture 9

Data Integrity

Objectives

 After completing this lesson, you should be able to do the following

 Discuss about data Integrity

 Describe about the types of constraints

 Create and maintain constraints

 Describe Adding Constraints

 Drop the constraints

RDBMS Concepts and Oracle 8i

116

Coverage Plan

Lecture 9

9.1 Snap shot

9.2 Data integrity

9.3 Adding constraints

9.4 Short summary

9.5 Brain Storm

RDBMS Concepts and Oracle 8i

117

9.1 Snap Shot

In this Lecture is to introduce about the importance of data integrity, enforcing business rules

using constraints. This chapter deals with creating different types of constraints in different

ways. This chapter briefly deals with enabling, disabling and dropping constraints.

9.2 Data Integrity

Data integrity ensures that the data entered into the database by the user is checked for it’s

correctness and is the data that is supposed to go into the database. Thus, the data gets

automatically validated when it is entered as per the instructions or commands of the

designer and by this way RDBMS ensures that the application has a high degree of data

security and integrity.

RDBMS ensures data integrity through automatic validation of data using integrity

constraints. The integrity constraints are non-procedural constructs and by just specifying

those, the designer can automate the validation process at the time of data entry. Popular

integrity constraints are NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY and CHECK

constraints.

9.2.1 Constraints

Data Security and Data Integrity are the most important factors in deciding the success of a

system. Constraints are a mechanism used by Oracle to restrict invalid data from being

entered into the table and thereby maintain the integrity of the data. They are otherwise

called as Business Rules. These constraints can be broadly classified into 3 types:

• Entity Integrity Constraints

• Domain Integrity Constraints

• Referential Integrity Constraints

Entity Integrity Constraint

Entity Integrity constraints can be classified as

RDBMS Concepts and Oracle 8i

118

• PRIMARY KEY

• UNIQUE KEY

Choosing a table’s Primary Key

A primary key allows each row in a table to be uniquely identified and ensures that no

duplicate rows exist and no null values are entered. Selecting a primary key needs the

following guidelines:

• Choose a column whose data values are unique.

• Choose a column whose data values never change.

A primary key value is used to identify a row in the table. Therefore, primary key values

must not contain any data that is used for any other purpose. Primary key can contain one or

more columns of the same table. Together they form a composite Primary Key.

Using UNIQUE Key Constraints

Unique key constraint is used to prevent the duplication of key values within the rows of a

table. If values are entered into a column defined with a unique key, repeating the same data

for that column is not possible but it can contain any number of null values. According to

Oracle, one null is not equal to another null.

9.2.2 Domain Integrity Constraints

Domain Integrity constraints are based on the column values and any deviations or violations

are prevented. The two types of Domain Integrity Constraints are

• Not Null Constraints

• Check Constraints

Choosing NULL Constraint

By default all columns can contain null values. NOT NULL constraints are used for columns

that absolutely require values at all times. NOT NULL constraints are often combined with

RDBMS Concepts and Oracle 8i

119

other types of constraints to further restrict the values that can exist in specific columns of a

table.

Choosing Check Constraint

Check Constraints are used to check whether the values in the table satisfy the criteria

specified for that column. They contain conditions. The conditions have the following

limitations.

• Conditions must be a boolean expression that can be evaluated using the values in the

record being inserted or updated.

• Conditions must not contain sub-queries

• Conditions cannot contain any SQL functions

• Condtions cannot contain pseudocolumns.

9.2.3 Referential Integrity Constraint

This constraint establishes the relationship between tables. A single or combination of

columns, which can be related to the other tables, is used to perform this operation. Foreign

key is used to establish the relationship. This kind of relationship can be referred to as a

Parent-Child relationship. The table containing the referenced key from where other tables

refer for values is called the Parent table and the table containing the foreign key is called the

child table.

9.3 Adding Constraints

Constraints can be added in two different ways. They are

• Adding at the time of creating tables

• Adding after creating tables

The next section deals with the adding constraints at the time of creating tables. Every

constraint contains a name followed by the type of the constraint.

9.3.1 Adding Entity Integrity Constraints

RDBMS Concepts and Oracle 8i

120

Both primary key and unique key constraints can be added at the time of creation of tables.

Let us consider creating a table called item_master, which contains item_code, item_name

and unit_price.

Example

Create table Item_master(item_code number primary key,

 Item_name varchar2(20) unique,

 Unit_price number(9,2)

);

The table is created along with the constraints. If a constraint is given without specifying the

name of the constraint, Oracle by default assigns a name to the constraint that is unique

across. The constraint starts with ‘SYS_C’ followed by some numbers.

After creation, records are inserted into the table as follows:

INSERT INTO item_master VALUES (1,’Pencils’, 2.50);

If the same command is executed again, it raises an error.

INSERT INTO item_master VALUES (1,'Pencils', 2.50);

 *

ERROR at line 1:

ORA-00001: unique constraint (HEMA.SYS_C00769) violated

By looking at this error message, the user may not understand which value is violated. In

order to avoid this situation, a name has to be provided for every constraint that is easy to

read. Refining the above example,

Create table Item_master(item_code number CONSTRAINT pkit_code primary key,

 Item_name varchar2(20) CONSTRAINT unqit_name unique,

 Unit_price number(9,2)

);

Naming the constraints always provides better readability.

RDBMS Concepts and Oracle 8i

121

9.3.2 Adding Domain Integrity Constraints

The user has to necessarily provide values for the columns containing NOT NULL values.

NOT NULL constraint is ideal in cases where the value for the column must exist. Consider

an organization that needs to store all the employee information. In this case, the employee

name column cannot be left blank.

What is NULL?

NULL means some un-known value. NULL values can always be updated later with some

values. Remember it is not equal to zero.

Example

CREATE TABLE employee_master (empno NUMBER, empname varchar2 (20)

CONSTRAINT NN_ENAME NOT NULL);

While inserting records to this table,

INSERT INTO employee_master VALUES (1,null);

INSERT INTO employee_master VALUES (1,null)

ERROR at line 1:

ORA-01400: cannot insert NULL into ("HEMA"."EMPLOYEE_MASTER"."EMPNAME")

In the above situation, since empname column has a constraint, it ensures that some values

are entered and hence the error is raised.

Check Constraints are used to perform the checking of conditions based on the values

entered. The CHECK constraint is used to enforce business rules as shown in the following

example:

 Example

CREATE TABLE employee_master (empno NUMBER, empname VARCHAR2 (20), sex

CHAR(1) CONSTRAINT chk_sex CHECK (SEX IN (‘M’,’F’,’m’,’f’))

RDBMS Concepts and Oracle 8i

122

);

In the sex column, valid values are ‘M’,’F’,’m’,’f’. If values entered do not match the

condition, error message appears on the screen. As shown below:

INSERT INTO employee_master VALUES (2,'Aditya','b');

INSERT INTO employee_master VALUES (2,'Aditya','b')

*

ERROR at line 1:

ORA-02290: check constraint (HEMA.CHK_SEX) violated

Another example for using CHECK Constraint is given below. This example checks for

constraints on salary that an organization provides. The minimum salary that the

organization provides is 1000 and the maximum is 7000. To check for this type of constraint

use,

Example

CREATE TABLE employee_master (Empcode NUMBER, empname VARCHAR2(20),

Salary NUMBER CONSTRAINT CHK_SAL CHECK(salary BETWEEN 1000 and 7000));

In the above example, BETWEEN operator is used to check if the salary lies within the range

of 1000 to 7000.

Relationships between Parent and Child tables

In order to establish a parent-child or master-detail relationship, referential integrity

constraints are used. The relationship can be from one parent to one or more than one child.

The establishment of a Parent-Child relationship has some restrictions.

• Parent table must be created before creating the child table.

• The Parent table column, which is referenced in the child table, must contain either

Primary Key or Unique Key constraints.

RDBMS Concepts and Oracle 8i

123

Consider a table called Customer which contains the details of the customers who have

ordered for products and an Order table that maintains the information about the orders

placed.

The structures of the tables look like:

CUST_MASTER

 CCODE NUMBER(5)

 NAME VARCHAR2(40)

 ADDRESS VARCHAR2(100)

ORDER_MASTER

 OCODE NUMBER(4)

 CCODE NUMBER(5)

 ODATE DATE

 OVAL NUMBER

Here, the Cust_master is the master table and order_master is the child table.

CREATE TABLE cust_master (ccode NUMBER(5) CONSTRAINT pk_ccode PRIMARY KEY,

Name VARCHAR2(40), Address VARCHAR2(100));

CREATE TABLE order_master (ocode NUMBER(4), ccode NUMBER(5) CONSTRAINT

fk_ccode REFERENCES cust_master(ccode),

odate DATE, oval NUMBER);

In the above example, note that the master table must be created first and only then the child

table is created. To establish the relationship, add REFERENCES clause which refers to the

master table.

If the value in the child table refers to a non-existing record in the parent table, an error is

raised.

RDBMS Concepts and Oracle 8i

124

Example

INSERT INTO cust_master VALUES (1,’Arun’,’Chennai’);

INSERT INTO cust_master VALUES (2,’Ramesh’,’Bangalore’);

Inserting records into child table.

INSERT INTO order_master VALUES(1,1,’01-JAN-2000’,3000);

The record is inserted in to the child table since the value 1 of customer code column refers to

the parent record in Cust_master table.

INSERT INTO order_master VALUES (2,4,’01-Jul-2000’, 1000);

INSERT INTO order_master VALUES (2,4,'01-Jul-2000', 1000)

 *

ERROR at line 1:

ORA-02291: integrity constraint (HEMA.FK_CCODE) violated - parent key not found

This raises to an error since there is no reference record in the master table for Customer code

4.

The above-discussed types of constraints are called Column level constraints because they are

defined along with the table definition. Another type of constraint is called the Table Level

Constraint which is shown below:

CREATE TABLE employee_master (Empcode NUMBER, empname VARCHAR2 (20),

Salary NUMBER, sex NUMBER,

CONSTRAINT pk_empno PRIMARY KEY (empcode), CONSTRAINT chk_sal CHECK

(salary BETWEEN 1000 and 7000), CONSTRAINT chk_sex CHECK (sex IN (‘M’,’F’,’m’,’f’)));

The table-level constraint for adding a referential integrity constraint is shown below:

RDBMS Concepts and Oracle 8i

125

CREATE TABLE order_master (ocode NUMBER(4), ccode NUMBER(5),odate DATE, oval

NUMBER,

CONSTRAINT fk_ccode FOREIGN KEY(ccode) REFERENCES cust_master(ccode));

While creating Table-level constraints for referential Integrity constraint, FOREIGN KEY

along with REFERENCES must be used.

Note: NOT NULL constraints cannot be given for Table-level constraints.

Using ALTER Statement

Constraints can be created for existing tables using ALTER statement. The following example

illustrates this. Assume that the tables order_master, employee_master, item_master are

created without constraints.

To add a primary key constraint,

Syntax:

ALTER TABLE <tablename> ADD [CONSTRAINT <constraint name>] PRIMARY KEY

(colname);

Example

ALTER TABLE employee_master ADD CONSTRAINT pk_empno PRIMARY KEY

(empcode);

To add a unique constraint,

Syntax:

ALTER TABLE <tablename> ADD [CONSTRAINT <constraint name>] UNIQUE (colname);

Example

ALTER TABLE item_master ADD CONSTRAINT unq_name UNIQUE(item_name);

Check constraints are added using,

RDBMS Concepts and Oracle 8i

126

Syntax:

ALTER TABLE <tablename> ADD [CONSTRAINT <constraint name>] CHECK (colname

<condition>);

Example

ALTER TABLE employee_master ADD CONSTRAINT ck_sal CHECK (salary BETWEEN

1000 AND 7000);

In order to add a referential integrity constraint use FOREIGN KEY and REFERENCES

keyword.

Syntax:

ALTER TABLE <tablename> ADD [<CONSTRAINT <constraint name>] FOREIGN

KEY(colname) REFERENCES <mastertable>(colname);

Example

ALTER TABLE order_master ADD CONSTRAINT fk_custcode FOREIGN KEY(ccode)

REFERENCES cust_master(ccode);

Inserting a NOT NULL constraint using ALTER statement cannot be done directly. Either

MODIFY or CHECK is required to do this functionality.

Example

ALTER TABLE employee_master MODIFY (empname varchar2(20) not null)

9.3.3 Enabling Constraints

The following CREATE TABLE and ALTER TABLE statements both define and enable

integrity constraints:

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY, . . .);

ALTER TABLE emp1

RDBMS Concepts and Oracle 8i

127

 ADD PRIMARY KEY (empno);

The above two statements add the primary key constraint. The first adds the primary key

constraint at the time of creation of the table. The next statement tries to add the constraint

after the table is created. Here if the records are not avaulable, the constraint is added. If

records are already present, the ALTER TABLE statement will fail.

9.3.4 Disabling Constraints

The following CREATE TABLE and ALTER TABLE statements both define and disable

integrity constraints:

CREATE TABLE emp (

 empno NUMBER(5) PRIMARY KEY DISABLE, . . .);

 ALTER TABLE emp

 ADD PRIMARY KEY (empno) DISABLE;

The above two statements describe the employee number to be primary key but initially it is

disabled.

Enabling and Disabling Defined Integrity Constraints

Use the ALTER TABLE command to

• enable a disabled constraint, using the ENABLE clause

• disable an enabled constraint, using the DISABLE clause

Enabling Disabled Constraints

The following statements are examples of statements that enable disabled integrity

constraints:

ALTER TABLE dept

 ENABLE CONSTRAINT dname_ukey;

RDBMS Concepts and Oracle 8i

128

ALTER TABLE dept

 ENABLE PRIMARY KEY,

 ENABLE UNIQUE (dname, loc);

The above 2 statements tries to enable the constraints.

An ALTER TABLE statement that attempts to enable an integrity constraint fails when the

rows of the table violate the integrity constraint.

9.3.4 Disabling Enabled Constraints

The following statements are examples of statements that disable enabled integrity

constraints:

ALTER TABLE dept

 DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept

 DISABLE PRIMARY KEY,

 DISABLE UNIQUE (dname, loc);

The reversal of enable is disable. These two statements disables the enabled constraints.

Unlike ENABLE, this does not perform any checking while disabling.

9.3.5 Dropping Integrity Constraints

Drop an integrity constraint if the rule that it enforces is no longer true or if the constraint is

no longer needed. Drop an integrity constraint using the ALTER TABLE command and the

DROP clause. For example, the following statements drop integrity constraints:

ALTER TABLE dept

 DROP UNIQUE (dname, loc);

ALTER TABLE emp

 DROP PRIMARY KEY,

 DROP CONSTRAINT dept_fkey;

RDBMS Concepts and Oracle 8i

129

DROP TABLE emp CASCADE CONSTRAINTS;

The two Alter statements drops the unique, primary keys. The third statement drops the EMP

table along with all the constraints.

Specifying Referential Actions for Foreign Keys

Oracle allows referential integrity actions to be enforced, as specified the definition of a

FOREIGN KEY constraint:

• The ON DELETE CASCADE Action This action allows referenced data in the parent key

to be deleted (but not updated). If referenced data in the parent key is deleted, all rows in

the child table that depend on the deleted parent key values are also deleted. To specify

this referential action, include the ON DELETE CASCADE option in the definition of the

FOREIGN KEY constraint. For example:

Example

CREATE TABLE emp (. . .,

 FOREIGN KEY (deptno) REFERENCES dept

 ON DELETE CASCADE);

In this example, whenever a foreign key is added with an ON DELETE CASCADE constraint,

the corresponding record in the master table(dept) is checked. This means that, whenever a

record in dept table is deleted, corresponding record in the emp table is also deleted.

Example

Consider the following CREATE TABLE statements that define a number of integrity

constraints, and the following example:

CREATE TABLE dept (

deptno NUMBER(3) PRIMARY KEY,

dname VARCHAR2(15),

loc VARCHAR2(15),

CONSTRAINT dname_ukey UNIQUE (dname, loc),

RDBMS Concepts and Oracle 8i

130

CONSTRAINT loc_check1

CHECK (loc IN ('NEW YORK', 'BOSTON', 'CHICAGO')));

CREATE TABLE emp (

empno NUMBER(5) PRIMARY KEY,

ename VARCHAR2(15) NOT NULL,

job VARCHAR2(10),

mgr NUMBER(5) CONSTRAINT mgr_fkey

 REFERENCES emp ON DELETE CASCADE,

hiredate DATE,

sal NUMBER(7,2),

comm NUMBER(5,2),

deptno NUMBER(3) NOT NULL

CONSTRAINT dept_fkey REFERENCES dept);

This creates the 2 table namely the primary key along with other constraints are specified. In

emp table, along with foreign key on delete cascade is also specified which automatically

ensures that whenever a record in Dept table is deleted corresponding rows in Emp table also

deleted.

Deferred Constraint Checking

Constraints can be deferred for validity until the end of the transaction.

• A constraint is deferred if the system checks that it is satisfied only on commit. If a

deferred constraint is violated, then commit causes the transaction to roll back.

• If a constraint is immediate (not deferred), then it is checked at the end of each statement.

If it is violated, the statement is rolled back immediately.

If a constraint causes an action (for example, delete cascade), that action is always taken as

part of the statement that caused it, whether the constraint is deferred or immediate.

RDBMS Concepts and Oracle 8i

131

Constraint Attributes

Constraints can be defined as either deferrable or nondeferrable. These attributes can be

different for each constraint. Keywords that must appear in the Constraint clause is:

• DEFERRABLE or NOT DEFERRABLE

SET CONSTRAINTS Mode

The SET CONSTRAINTS statement makes constraints either DEFERRED or IMMEDIATE for

a particular transaction. This statement is used to set the mode for a list of constraint names or

for ALL constraints.

The SET CONSTRAINTS mode lasts for the duration of the transaction or until another SET

CONSTRAINTS statement resets the mode.

SET CONSTRAINTS ... IMMEDIATE causes the specified constraints to be checked

immediately on execution of each constrained statement. Oracle first checks any constraints

that were deferred earlier in the transaction and then continues immediately checking

constraints of any further statements in that transaction (as long as all the checked constraints

are consistent and no other SET CONSTRAINTS statement is issued). If any constraint fails

the check, an error is signalled; at that point, a COMMIT would cause the whole transaction

to roll back.

 Example

Create table testconst(x number, y number constraint ck1 check (y > 20) deferrable);

Set constraint ck1 deferred;

Will display like:

Constraint set.

When records are inserted with violation checking is not performed immediately. The

following is illustrative of this:

insert into testconst values(12,11);

RDBMS Concepts and Oracle 8i

132

1 row created.

commit;

commit

*

ERROR at line 1:

ORA-02091: transaction rolled back

ORA-02290: check constraint (HEMA.CK1) violated

Only when a COMMIT takes place the constraint is validated and the whole transaction is

rolled back. Also, the set statement is valid only for one single transaction. Before the second

transaction starts, the set statement must be given again.

9.4 Short Summary

Constraints are mechanisms that are used by Oracle to restrict invalid data from being

entered into the table.

Constraints can be of 3 types:

• Entity Integrity Constraints

• Domain Integrity Constraints

• Referential Integrity Constraints

Entity Integrity Constraints

Primary Key - No duplicates and no null values allowed. A table can have only one primary

key.

Unique Key – No duplicates but any number of null values.

Domain Integrity Constraints

NOT NULL - No null values allowed

RDBMS Concepts and Oracle 8i

133

Check – Checks for conditions

Referential Integrity Constraints

Foreign Key – Establish Master-child Relationship.

Constraints can be enabled or disabled.

They can be dropped using alter command.

9.5 Brain Storm

1. How do you Enforce Entity and Referential Integrity?

2. How do you make a constraint inactive?

3. What constraints can be enforced [Using Enforce Option]

4. What is the difference between Primary Key and Unique Key?

5. Can a table have more than one Primary Key?

6. Explain the usage of ON DELETE CASCADE

7. How a constraint can be dropped?

8. Can a check condition check for more than one column?

9. How a constraint can be made to check later?

10. How a disabled constraint can be enabled?

RDBMS Concepts and Oracle 8i

134

Lecture 10

Operators and Functions

Objectives

 After completing this lesson, you should be able to do the following

 Discuss the operators and functions

 Describe and use Expressions

 Describe and create Functions

 Describe about Scalar functions

 Describe about Aggregate functions

RDBMS Concepts and Oracle 8i

135

Coverage Plan

Lecture 10

10.1 Snap shot

10.2 Operators

10.3 Functions

10.4 Scalar functions

10.5 Aggregate functions

10.6 Short summary

10.7 Brain Storm

RDBMS Concepts and Oracle 8i

136

10.1 Snap Shot

This chapter gives an insight into the SQL operators, expressions in Oracle and all the

important functions that can be used in Oracle applications through SQL. This chapter also

deals with the Aggregate Functions that are used to group values and display as a singular

value. The usage of Group By and Having clause are also dealt with.

• Expressions

• Logical Operators

• Arithmetic Operators

• Comparison Operators

• Built-in Scalar Functions

• Numeric Functions

• Character Functions

• Date Functions

• Conversion Functions

• Aggregate Functions

10.2 Operators

Expressions are a combination of formulae, constants and/or variables using operators. They

are used with operators to perform some action.

Operators

An operator is used to manipulate individual data items and return a result. These sets of

data items are called operands. Operators are represented by special characters or by

keywords. For example, a multiplication operator is represented by ‘*’. The following section

of this chapter deals with various operators. The various kinds of operators are:

• Arithmetic

• Character

• Comparison / Relational

• Logical

• Set

RDBMS Concepts and Oracle 8i

137

Arithmetic Operators

Arithmetic operators are used to perform operations on numeric values. The result of the

operation is a numeric value. Some operators can be used for calculating date arithmetic

values. The following table lists out the arithmetic operators.

Operator Purpose Example

 + Adds values Select salary +1000 from

 employee;

 - Subtracts values Select qoh-qty_ord from

 Order_tab;

 * Multiplies the values Select salary,salary*.01 from

 employee;

 / Divides the values Select marks/100 from

 student;

These operators can be given in conjunction with each other. In these situations, multiple

operators must be used according to the precedence rules within parentheses. If the

parentheses are not provided the order in which arithmetic operations take place changes.

Character Operators

Character operators are used in expressions to manipulate character strings. Concatenation

operator(||) is used to perform this operation.

Example

SELECT ‘This is an ‘|| ’Example for ‘|| ‘Concatenation operator’ FROM DUAL;

Displays,

RDBMS Concepts and Oracle 8i

138

THIS IS AN EXAMPLE FOR CONCATENATION OPERATOR

--

This is an Example for Concatenation operator

In this example, a system table called ‘DUAL’ is used. This table contains one column.

The result of concatenating three character strings is another character string. If all the strings

are of character datatype, the resultant also contains the character datatype and is restricted to

255 characters.

Relational Operators

Certain operators are used to perform comparisons between values. The result of the

comparison or relational operator containing an expression will either be TRUE, FALSE or

unknown. The following are the list of relational operators.

Operator Purpose Example

 = Equality test SELECT empno, salary

 FROM employee WHERE deptno=10

!= ,<> Un-equality test SELECT * FROM employee

 WHERE salary != 4000

> Greater SELECT * FROM employee

 than specified value WHERE salary

 > 2000

< Lesser than specified SELECT * FROM students

 value WHERE marks < 40

>= Greater than or SELECT * FROM roduct

 equal to WHERE unit_price >=4

<= Lesser than or equal to SELECT * FROM product

 WHERE unit_price <=4

RDBMS Concepts and Oracle 8i

139

Between The value lies UPDATE student

 within the range SET grade=‘A’ WHERE

 marks BETWEEN 80 AND 90

IN Displays records that SELECT * FROM employee

 satisfy the list of values WHERE deptno IN (10,20,30)

 (Records where the department

 number is either 10 or 20 or 30

 are displayed)

IS[NOT] Is used to check for SELECT * FROM NULL

Values employee WHERE empname IS NULL

 The only operator that

 checks NULL Values

LIKE Matches a specified pattern. SELECT empname FROM

 To match a single character, employee WHERE ename

 use ‘_’ and for multiple LIKE ‘_A%’

 characters use ‘%’ (Displays employee names

 where the second letter

 of the name is ‘A’)

Logical Operators

A Logical Operator is used to combine the results of two or more conditions to produce a

single result based on them. Following are the set of Logical Operators

• AND

• OR

• NOT

AND Operator

Returns TRUE if both the conditions are TRUE. Otherwise, it returns FALSE.

RDBMS Concepts and Oracle 8i

140

Example

SELECT * FROM emp WHERE deptno=10 AND sal >=4000;

This would display,

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

1383 Saran PRESIDENT 17-NOV-81 5000 10

This example checks for both the conditions and the records that match both the conditions

are alone displayed. All the records with deptno 10 and sal greater than or equal to 4000 are

displayed.

OR Operator

Returns TRUE if either of the conditions evaluates to TRUE. Otherwise it returns FALSE.

Example

SELECT * FROM emp WHERE deptno=10 OR deptno=20;

This display would be as follows:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

------- -------- ----- ----- -------- ----- ------ -------

7839 KING PRESIDENT 17-NOV-81 5000 10

7782 CLARK MANAGER 7839 09-JUN-81 2450 10

7566 JONES MANAGER 7839 02-APR-81 2975 20

7902 FORD ANALYST 7566 03-DEC-81 3000 20

7369 SMITH CLERK 7902 17-DEC-80 800 20

7788 SCOTT ANALYST 7566 09-DEC-82 3000 20

7876 ADAMS CLERK 7788 12-JAN-83 1100 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

The example displays records of all the employees where the deptno is either 10 or 20.

NOT Operator

NOT operator returns TRUE if the enclosed condition evaluates to FALSE and FALSE if the

condition evaluates to TRUE.

Example

RDBMS Concepts and Oracle 8i

SELECT * FROM students WHERE NOT (sname IS NULL);

The example displays all the rows where the student name is NOT NULL.

SET operators

Set operators combine the results of two component queries into a single result. Queries

containing set operators are called Compound Queries.

Note: The SET operators can compare two sets of data only if the data are of the same datatype.

The SET operators are discussed below.

Union

Union operator is used to display all the records selected by either query. Consider two

tables X and Y with the same structure. A UNION operation performed on these two tables

yields records from both the tables without the values being repeated.

 X Y

Data in the tables

Table X Table Y

Itemcode Name Itemcode Name

1 Powders 2 Soaps

2 Soaps 3 Creams

4 Pens 4 Pencils

Example

141

RDBMS Concepts and Oracle 8i

142

SELECT * FROM x

UNION

SELECT * FROM y

The output of this query looks like:

ITEMCODE NAME

1 Powders

2 Soaps

3 Creams

4 Pencils

4 Pens

UNION ALL Operator

UNION ALL operator works the same way as the UNION Operator. But the difference is that

this operator displays duplicate values also.

Example

SELECT * FROM x

UNION ALL

SELECT * FROM y

The output of this query looks like:

 ITEMCODE NAME

1 Powders

2 Soaps

2 Soaps

3 Creams

4 Pencils

RDBMS Concepts and Oracle 8i

4 Pens

INTERSECT operator

All the common distinct values are alone selected by the INTERSECT Operator.

 X Y

Example

SELECT * FROM x

INTERSECT

SELECT * FROM Y

This would return

 ITEMCODE NAME

2 Soaps

MINUS Operator

All the distinct rows selected by the first query but which are not in the second query are

listed.

 X Y

Example

143

RDBMS Concepts and Oracle 8i

144

SELECT * FROM x

MINUS

SELECT * FROM y

Records available in table X that are not available in table Y are displayed.

The output will look like:

 ITEMCODE NAME

1 Powders

4 Pens

All set operators have equal precedence. If a SQL statement contains multiple sets of

operators, ORACLE evaluates them from left to right. If the order is to be changed,

parentheses has to be used to explicitly specify another order. These querying tables can

contain different structures. But the type of the data in the tables must match.

10.3 Functions

Functions are similar to an operator. A function manipulates data items and returns a result.

Functions differ from operators in the format in which they appear with arguments.

Functions can be broadly classified into two types.

• Built-In Functions

• User-Defined Functions (dealt in later chapters) Built-in functions are predefined

functions that perform a specific task. Built-in functions based on the values that they

take to perform a task, can be classified into two types.

• Scalar or Single-Row Functions

• Aggregate or Group Functions

RDBMS Concepts and Oracle 8i

145

A single row function returns a single result row for every row of a queried table or view,

while a group or aggregate function works on a group of rows. This section deals briefly with

the various types of Single-Row functions.

10.4 Scalar Functions

Scalar Functions can be classified as follows:

• Number Functions

• Character Functions

• Returning Number Values

• Returning Character Values

• Date Functions

• Conversion Functions

• Other Functions

Number Functions

Number functions accept numeric input and return numeric values. This section deals with

numeric functions

ABS

Syntax

ABS(n)

Returns the absolute value of n

Example

SELECT ABS(-15) "Absolute" FROM DUAL

Absolute

 15

FLOOR

RDBMS Concepts and Oracle 8i

146

Syntax

 FLOOR(n)

Returns the largest integer equal to or less than n.

Example

SELECT FLOOR(15.7) "Floor" FROM DUAL

Floor

 15

CEIL

Syntax

CEIL(n)

Returns the smallest integer greater than or equal to n.

Example

SELECT CEIL(15.7) "Ceiling" FROM DUAL

Ceiling

 16

EXP

Syntax

EXP(n)

Returns e raised to the nth power; e = 2.71828183 ...

Example

SELECT EXP(4) "e to the 4th power" FROM DUAL

RDBMS Concepts and Oracle 8i

147

e to the 4th power

 54.59815

LN

Syntax

LN(n)

Returns the natural logarithm of n, where n is greater than 0.

Example

SELECT LN(95) "Natural log of 95" FROM DUAL

Natural log of 95

 4.5538769

LOG

Syntax

 LOG(m,n)

Returns the logarithm, base m, of n. The base m can be any positive number other than 0 or 1

and n can be any positive number.

Example

SELECT LOG(10,100) "Log base 10 of 100" FROM DUAL

Log base 10 of 100

 2

MOD

Syntax

MOD(m,n)

Returns the remainder of m divided by n. Returns m if n is 0.

Example

RDBMS Concepts and Oracle 8i

148

SELECT MOD(11,4) "Modulus" FROM DUAL

Modulus

 3

POWER

 Syntax

 POWER(m,n)

Returns m raised to the nth power. The base m and the exponent n can be any numbers, but if

m is negative, n must be an integer.

Example

SELECT POWER(3,2) "Raised" FROM DUAL

Raised

 9

ROUND

Syntax

 ROUND(n[,m])

Returns n rounded to m places right of the decimal point; if m is omitted, n is rounded to 0

places. m can be negative to round off digits left of the decimal point. m must be an integer.

Example

SELECT ROUND(15.193,1) "Round" FROM DUAL

Round

15.2

SIGN

Syntax

SIGN(n)

If n<0, the function returns -1; if n=0, the function returns 0; if n>0, the function returns 1.

RDBMS Concepts and Oracle 8i

149

Example

SELECT SIGN(-15) "Sign" FROM DUAL

Sign

 -1

SQRT

 Syntax

SQRT(n)

Returns square root of n. The value of n cannot be negative. SQRT returns a "real" result.

Example

SELECT SQRT(26) "Square root" FROM DUAL

Square root

 5.0990195

TRUNC

Syntax

 TRUNC(n[,m])

Returns n truncated to m decimal places; if m is omitted, n is truncated to 0 places. m can be

negative to truncate (make zero) m digits left of the decimal point.

Example

SELECT TRUNC(15.79,1) "Truncate" FROM DUAL

Truncate

 15.7

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL

Truncate

 10

RDBMS Concepts and Oracle 8i

150

Character Functions

Character functions can return both numeric and character values. The following functions

are character functions that return numeric values.

ASCII

Syntax

 ASCII(char)

Returns the decimal representation in the database character set of the first byte of char. If the

database character set is 7-bit ASCII, the function returns an ASCII value.

Example

SELECT ASCII('Q') FROM DUAL

ASCII('Q')

 81

INSTR

Syntax

INSTR(char1,char2[,n[,m]])

Searches char1 beginning with its nth character for the mth occurrence of char2 and returns

the position of the character in char1 that is the first character of this occurrence. If n is

negative, ORACLE counts and searches backward from the end of char1. The value of m

must be positive. The default values of both n and m are 1, meaning ORACLE begins

searching at the first character of char1 for the first occurrence of char2. The return value is

relative to the beginning of char1, regardless of the value of n, and is expressed in characters.

If the search is unsuccessful (if char2 does not appear m times after the nth character of char1)

the return value is 0.

RDBMS Concepts and Oracle 8i

151

Examples

SELECT INSTR('CORPORATE FLOOR','OR', 3, 2) "Instring" FROM DUAL

Instring

 14

SELECT INSTR('CORPORATE FLOOR','OR', -3, 2) "Reversed Instring" FROM DUAL

Reversed Instring

 2

INSTRB

Syntax

INSTRB(char1,char2[,n[,m]])

This is the same as INSTR, except that n and the return value are expressed in bytes, rather

than in characters. For a single-byte database character set, INSTRB is equivalent to INSTR.

Example

SELECT INSTRB('CORPORATE FLOOR','OR',5,2) "Instring in bytes" FROM DUAL

Instring in bytes

 27

LENGTH

Syntax

 LENGTH(char)

Returns the length of characters in char. If char has datatype CHAR, the length includes all

trailing blanks. If char is null, this function returns null.

Example

SELECT LENGTH('RADIANT') "Length in characters" FROM DUAL

RDBMS Concepts and Oracle 8i

152

Length in characters

 7

LENGTHB

Syntax

 LENGTHB(char)

Returns the length of char in bytes. If char is null, this function returns null. For a single-byte

database character set, LENGTHB is equivalent to LENGTH.

Example

Assume a double-byte database character set:

SELECT LENGTHB('CANDIDE') "Length in bytes" FROM DUAL

Length in bytes

 14

Character Functions Returning character Values

CHR

Syntax

CHR(n)

Returns the character which is the binary equivalent of n in the database character set.

Example

SELECT CHR(75) "Character" FROM DUAL

Character

K

RDBMS Concepts and Oracle 8i

153

CONCAT

Syntax

CONCAT(char1, char2)

Returns char1 concatenated with char2. This function is equivalent to the concatenation

operator (||).

Example

This example uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(ename, ' is a '), job) "Job" FROM emp

WHERE empno = 7900

Job

JAMES is a CLERK

INITCAP

 Syntax

 INITCAP(char)

Returns char, with the first letter of each word in uppercase and all other letters in lowercase.

Words are delimited by white spaces or characters that are not alphanumeric.

Example

SELECT INITCAP('the soap') "Capitalized" FROM DUAL

Capitalized

The Soap

LPAD

Syntax

LPAD(char1,n [,char2])

RDBMS Concepts and Oracle 8i

154

Returns char1, left-padded to length n with the sequence of characters in char2; char2 defaults

to ' ', a single blank. If char1 is longer than n, this function returns the portion of char1 that fits

in n.

The argument n is the total length of the return value as it is displayed on the screen. In most

character sets, this is also the number of characters in the return value. However, in certain

multi-byte character sets, the display length of a character string can differ from the number

of characters in the string.

Example

SELECT LPAD('Page 1',15,'*.') "LPAD example" FROM DUAL

LPAD example

..*.*.*Page 1

LTRIM

Syntax

LTRIM(char[,Set])

Removes characters that appear in set from the left of char, set defaults to ' ', a single blank.

Example

SELECT LTRIM('xyxXxyLAST WORD','xy') "Left trim example" FROM DUAL

Left trim example

XxyLAST WORD

REPLACE

Syntax

 REPLACE(char, search_string[,replacement_string])

Returns char with every occurrence of search_string replaced with replacement_string. If

replacement_string is omitted or null, all occurrences of search_string are removed. If

search_string is null, char is returned. This function provides a superset of the functionality

RDBMS Concepts and Oracle 8i

155

provided by the TRANSLATE function. TRANSLATE provides single character, one to one,

substitution. REPLACE allows you to substitute one string for another as well as to remove

character strings.

Example

SELECT REPLACE('JACK and JUE','J','BL') "Changes" FROM DUAL

Changes

BLACK and BLUE

RPAD

Syntax

 RPAD(char1, n [,char2])

Returns char1, right-padded to length n with char2, replicated as many times as necessary.

The default padding is ' ', a single blank. If char1 is longer than n, this function returns the

portion of char1 that fits in n.

The argument n is the total length of the return value as it is displayed on the terminal screen.

In most character sets, this is also the number of characters in the return value. However, in

certain multi-byte character sets, the display length of a character string can differ from the

number of characters in the string.

Example

SELECT RPAD(ename,11,'ab') "RPAD example" FROM emp WHERE ename = 'TURNER'

RPAD example

TURNERababa

RTRIM

Syntax

RTRIM(char [,set])

RDBMS Concepts and Oracle 8i

156

Returns char, with all the right-most characters that appear in set removed; set defaults to ' ', a

single blank. RTRIM works similar to LTRIM.

Example

SELECT RTRIM('TURNERyxXxy','xy') "Right trim example" FROM DUAL

Right trim example

TURNERyxX

SOUNDEX

Syntax

 SOUNDEX(char)

Returns a character string containing the phonetic representation of char. This function allows

words that are spelled differently, but sound alike in English to be compared.

Example

SELECT ename FROM emp WHERE SOUNDEX(ename) = SOUNDEX('SMYTHE')

ENAME

SMITH

SUBSTR

Syntax

 SUBSTR(char,m [,n])

Returns a portion of char, beginning at character m, n characters long. If m is positive,

ORACLE counts from the beginning of char to find the first character. If m is negative,

ORACLE counts backwards from the end of char. The value of m cannot be 0. If n is omitted,

ORACLE returns all characters till the end of char. The value of n cannot be less than 1.

Example

RDBMS Concepts and Oracle 8i

157

SELECT SUBSTR('ABCDEFG',3,2) "Substring" FROM DUAL

Substring

CD

SELECT SUBSTR('ABCDEFG',-3,2) "Substring" FROM DUAL

Substring

EF

SUBSTRB

Syntax

 SUBSTRB(char,m [,n])

The same as SUBSTR, except that the arguments m and n are expressed in bytes, rather than

in characters. For a single-byte database character set, SUBSTRB is equivalent to SUBSTR.

Example

Assume a double-byte database character set:

SELECT SUBSTRB('ABCDEFG',5,4) "Substring with bytes" FROM DUAL

Substring with bytes

CD

TRANSLATE

Syntax

 TRANSLATE(char,from,to)

Returns char with all occurrences of from character replaced by its corresponding to

character. Characters in char that are not in from character are not replaced. The argument

from can contain more characters than to. In this case, the extra characters at the end of from

have no corresponding characters in to. If these extra characters appear in char, they are

removed from the return value. We cannot use empty string for to in order to remove all

characters in from the return value. ORACLE interprets the empty string as null, and if this

function has a null argument, it returns null.

RDBMS Concepts and Oracle 8i

158

Example

This statement translates the given word called ‘Miles’ to ‘Tiles’.

SELECT TRANSLATE(‘Miles’,’M’,’T’) "Translate example" FROM DUAL

Translate example

Tiles

This statement returns a license number with the characters removed and the digits

remaining:

SELECT TRANSLATE('2KRW229', '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ',

'0123456789') "Translate example" FROM DUAL

Translate example

2229

UPPER

Syntax

 UPPER(char)

Returns char, with all letters uppercase. The return value has the same datatype as the

argument char .

Example

SELECT UPPER('Large') "Uppercase" FROM DUAL

Uppercase

LARGE

LOWER

RDBMS Concepts and Oracle 8i

159

Syntax

LOWER(char)

Returns char, with all letters in lowercase. The return value has the same datatype as the

argument char (CHAR or VARCHAR2).

Example

SELECT LOWER('MR. SAMUEL HILLHOUSE') "Lowercase" FROM DUAL

Lowercase

mr. samuel hillhouse

Date Functions

Date functions operate on values of the Date datatype. All Date functions return a value of a

DATE datatype, except the MONTHS_BETWEEN function that returns a number.

ADD_MONTHS

Syntax

ADD_MONTHS(d,n)

Returns the date d plus n months. The argument n can be any integer. If d is the last day of

the month or if the resulting month has fewer days than the day component of d, then the

result is the last day of the resulting month. Otherwise, the result has the same day component as d .

Example

SELECT ADD_MONTHS(sysdate,1) "Next month" FROM dual;

Next mont

04-JAN-01

LAST_DAY

Syntax

 LAST_DAY(d)

Returns the date of the last day of the month that contains d. This function is used to

determine how many days are left in the current month.

RDBMS Concepts and Oracle 8i

160

Example

SELECT SYSDATE,LAST_DAY(SYSDATE) "Last", LAST_DAY(SYSDATE) - SYSDATE "Days

Left" FROM DUAL

SYSDATE Last Days Left

--------- --------- ---------

04-DEC-00 31-DEC-00 27

SELECT ADD_MONTHS(LAST_DAY(sysdate),5) "Five months" FROM dual;

Five mont

31-MAY-01

MONTHS_BETWEEN

Syntax

MONTHS_BETWEEN(d1,d2)

Returns number of months between dates d1 and d2. If d1 is later than d2, the result is

positive; if d1 is earlier than d2, the result is negative. If d1 and d2 are either the same days of

the month or both last days of months, the result is always an integer; otherwise ORACLE

calculates the fractional portion of the result based on a 31-day month and also considers the

difference in time components of d1 and d2.

Example

SELECT MONTHS_BETWEEN(sysdate,’10-JAN-00’) "Months" FROM DUAL;

Months

10.829904

RDBMS Concepts and Oracle 8i

161

NEXT_DAY

Syntax

 NEXT_DAY(d,char)

Returns the date of the first weekday named by char that is later than the date d. The

argument char must be a day of the week in the session's date language. The return value has

the same hours, minutes, and seconds component as the argument d.

Example

SELECT NEXT_DAY('06-DEC-00','TUESDAY') "NEXT DAY" FROM DUAL;

NEXT DAY

12-DEC-00

ROUND

Syntax

ROUND(d[,fmt])

Returns d rounded to the unit specified by the format model fmt. If fmt is omitted, d is

rounded to the nearest day.

Example

SELECT ROUND(SYSDATE,'YEAR') "FIRST OF THE YEAR" FROM DUAL

FIRST OF

01-JAN-01

TRUNC

Syntax

TRUNC(d,[fmt])

Returns d with the time portion of the day truncated to the unit specified by the format model

fmt. If we omit fmt, d is truncated to the nearest day.

RDBMS Concepts and Oracle 8i

162

Example

SELECT TRUNC(SYSDATE, 'MM') "First Of The Month" FROM DUAL

First Of

01-DEC-00

Conversion Functions

Conversion functions convert a value from one datatype to another. Generally, the form of

the function names follows the convention datatype TO datatype. The first datatype is the

input datatype; the latter datatype is the output datatype. This section lists the SQL

conversion functions.

TO_CHAR, date conversion

Syntax

 TO_CHAR(d [, fmt])

Converts d of DATE datatype to a value of VARCHAR2 datatype in the format specified by

the date format fmt. If fmt is not specified, d is converted to a VARCHAR2 value in the

default date format.

Example

SELECT TO_CHAR(SYSDATE,'Month DD, YYYY') "New date format"

FROM dual;

New date format

December 04, 2000

TO_CHAR, number conversion

Syntax

TO_CHAR(n [, fmt])

RDBMS Concepts and Oracle 8i

163

Converts n of NUMBER datatype to a value of VARCHAR2 datatype, using the optional

number format fmt. If no fmt is provided, n is converted to a VARCHAR2 value exactly long

enough to hold its significant digits.

Example

SELECT TO_CHAR(17145,'099G999') "Char" FROM DUAL

Char

 017,145

TO_DATE

Syntax

TO_DATE(char [, fmt])

Converts char of CHAR or VARCHAR2 datatype to a value of DATE datatype. The fmt is a

date format specifying the format of char. If the fmt is not specified, char must be in the

default date format. If fmt is 'J', for Julian, then char must be a number.

Do not use the TO_DATE function with a DATE value for the char argument. The returned

DATE value can have a different century value than the original char, depending on fmt or

the default date format.

Example

SELECT TO_DATE('September 25, 2000, 11:00 A.M.', ‘Month dd, YYYY, HH:MI A.M.') FROM

DUAL

 Output

TO_DATE('

25-SEP-00

Date Format Models

RDBMS Concepts and Oracle 8i

164

The date format models can be used in :

• TO_CHAR function to translate a DATE value that is in a format other than the default

date format

• TO_DATE function to translate a character value that is in a format other than the default

date format

Date Format Elements

A date format model is composed of one or more date format elements. NO TAG lists the

date format model elements.

Element Meaning

SCC or CC Century; "S" prefixes BC dates with "-".

YYYY or SYYYY 4-digit year; "S" prefixes BC dates with "-".

IYYY 4-digit year based on the ISO standard.

YYY or YY or Y Last 3, 2, or 1 digit(s) of year.

IYY or IY or I Last 3, 2, or 1 digit(s) of ISO year.

Y, YYY Year with comma in this position.

SYEAR or YEAR Year, spelled out; "S" prefixes BC dates with "-".

RR Last 2 digits of year; for years in other

 countries.

BC or AD BC/AD indicator.

B.C. or A.D. BC/AD indicator with periods.

RDBMS Concepts and Oracle 8i

165

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1)

MM Month (01-12; JAN = 01)

RM Roman numeral month (I-XII; JAN = I).

MONTH Name of month, padded with blanks to length

 of 9 characters.

MON Abbreviated name of month.

WW Week of year (1-53) where week 1 starts on the first day of the year

 and continues to the seventh day of the year.

IW Week of year (1-52 or 1-53) based on the ISO standard.

W Week of month (1-5) where week 1 starts on

the first day of the month and ends on the seventh.

DDD Day of year (1-366).

DD Day of month (1-31).

D Day of week (1-7).

DAY Name of day, padded with blanks to length

of 9 characters.

DY Abbreviated name of day.

AM or PM Meridian indicator.

A.M. or P.M. Meridian indicator with periods.

HH or HH12 Hour of day (1-12).

RDBMS Concepts and Oracle 8i

166

HH24 Hour of day (0-23).

MI Minute (0-59).

SS Second (0-59).

SSSSS Seconds past midnight (0-86399).

The RR Date Format Element

The RR date format element is similar to the YY date format element, but it provides

additional flexibility for storing date values of other centuries. The RR date format element

allows you to store twenty-first century dates in the twentieth century by specifying only the

last two digits of the year. It also stores the twentieth century dates in the twenty-first century

in the same way if necessary.

If TO_DATE function is used with the YY date format element, the date value returned is

always in the current century. Instead if RR date format element is used, the century of the

return value varies according to the specified two-digit year and the last two digits of the

current year.

The following example demonstrates the behavior of the RR date format element.

Example

SELECT TO_CHAR(TO_DATE('27-OCT-95', 'DD-MON-RR') ,'YYYY')

"4-digit year" FROM DUAL

4-digit year

1995

SELECT TO_CHAR(TO_DATE('27-OCT-17', 'DD-MON-RR') ,'YYYY')

"4-digit year"

FROM DUAL

RDBMS Concepts and Oracle 8i

167

4-digit year

 2017

Note: If the year is between 0 to 49 its places them in the current century.

Date Format Element Prefixes & Suffixes

Following table lists prefixes/suffixes that can be added to date format elements:

Prefix/Suffix Meaning Element Value

FM Spelled character fmMONTH ‘June’

TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or Spelled, ordinal number DDSPTH FOURTH

THSP

TO_NUMBER

Syntax

TO_NUMBER(char [,fmt [, 'nlsparams']])

Converts char, a value of CHAR or VARCHAR2 datatype containing a number in the format

specified by the optional format model fmt, to a value of NUMBER datatype.

Example

UPDATE emp SET sal = sal + TO_NUMBER ('89')

 WHERE ename = 'BLAKE'

The update statement updates the record where the employee name is BLAKE.

Other Functions

RDBMS Concepts and Oracle 8i

168

DUMP

Syntax

 DUMP(expr [,return_format [, start_position [, length]]])

Returns a VARCHAR2 value containing the datatype code, length in bytes, and internal

representation of expr. The argument return_format specifies the format of the return value

and can have any of these values:

8 - returns result in octal notation.

10 - returns result in decimal notation.

16 - returns result in hexadecimal notation.

17 - returns result as single characters.

The argument start_position and length combine to determine which portion of the internal

representation to return. The default is to return the entire internal representation in decimal

notation.

If expr is null, this function returns 'NULL'.

Examples

SELECT DUMP(ename, 8, 3, 2) "OCTAL" FROM emp WHERE ename = 'SCOTT'

OCTAL

Type=1 Len=5: 117,124

SELECT DUMP(ename, 10, 3, 2) "ASCII" FROM emp WHERE ename = 'SCOTT'

ASCII

Type=1 Len=5: 79,84

GREATEST

Syntax

 GREATEST(expr [,expr] ...)

RDBMS Concepts and Oracle 8i

169

Returns the greatest of the list of exprs. All exprs after the first are implicitly converted to the

datatype of the first prior to the comparison. ORACLE compares the exprs using non-padded

comparison semantics. Character comparison is based on the value of the character in the

database character set. One character is greater than another if it has a higher value. If the

value returned by this function is character data, its datatype is always VARCHAR2.

Example

SELECT GREATEST('HARRY','HARRIOT','HAROLD') "GREATEST" FROM DUAL

GREATEST

HARRY

LEAST

Syntax

 LEAST(expr [,expr] ...)

Returns the least of the list of exprs. All exprs after the first are implicitly converted to the

datatype of the first prior to the comparison. ORACLE compares the exprs using non-padded

comparison semantics. If the value returned by this function is character data, its datatype is

always VARCHAR2.

Example

SELECT LEAST('HARRY','HARRIOT','HAROLD') "LEAST" FROM DUAL

LEAST

HAROLD

NVL

Syntax

NVL(expr1, expr2)

If expr1 is null, it returns expr2; if expr1 is not null, it returns expr1. The arguments expr1 and

expr2 can have any datatype. If their datatypes are different, ORACLE converts expr2 to the

datatype of expr1 before comparing them. The datatype of the return value is always the

RDBMS Concepts and Oracle 8i

170

same as the datatype of expr1, unless expr1 is character data in which case the return value's

datatype is VARCHAR2.

Example

SELECT ename, NVL(TO_CHAR(COMM),'NOT APPLICABLE') "COMMISSION"

FROM emp

WHERE deptno = 30

ENAME

COMMISSION

--------- -----------

ALLEN 300

WARD 500

MARTIN 1400

BLAKE NOT APPLICABLE

TURNER 0

JAMES NOT APPLICABLE

UID

Syntax

 UID

Returns an integer that uniquely identifies the current user.

 USER

Syntax

 USER

Returns the current ORACLE user with the datatype VARCHAR2. ORACLE compares values

of this function with blank-padded comparison semantics.

In a distributed SQL statement, the UID and USER functions identify the user on the local

database. These functions cannot be used in a CHECK constraint.

Example

SELECT USER, UID FROM DUAL

RDBMS Concepts and Oracle 8i

171

USER UID

--------- -------

OPS$KING 9

SYSDATE

Syntax

SYSDATE

Returns the current date and time. Requires no arguments. In distributed SQL statements,

this function return the date and time on the local database. This function cannot be used in

the condition of a CHECK constraint.

Example

SELECT SYSDATE “TODAY” FROM DUAL

TODAY

04-DEC-00

DECODE

Syntax:

DECODE(variable,<condition1>,<value1>,<condition2>,<value2>…)

This function is used to check for the if..then condition and displays the corresponding

values.

Example:

SELECT ENAME, DEPTNO,

DECODE(deptno,10,’Accounting’,20,’Sales’,30,’Purchase’,’others’) FROM EMP;

The output will be:

RDBMS Concepts and Oracle 8i

172

ENAME DEPTNO DECODE(DEP

---------- --------- ----------

KING 10 Accounting

BLAKE 30 Purchase

CLARK 10 Accounting

JONES 20 Sales

MARTIN 30 Purchase

ALLEN 30 Purchase

TURNER 30 Purchase

JAMES 30 Purchase

WARD 30 Purchase

FORD 20 Sales

SMITH 20 Sales

SCOTT 20 Sales

ADAMS 20 Sales

MILLER 10 Accounting

The records whose deptno is 10, their corresponding name in the DECODE function is

displayed, where the deptno is 20, the corresponding values are displayed. But this function

must not be used inside PL/SQL.

The following Table is lists of all the functions:

Functions Name

Numeric functions ABS(),EXP(),FLOOR(),CEIL(),LN(),LOG(),MOD(),POWER(),ROUND(),

SIGN(),SQRT(),TRUNC()

Character

functions

returning numeric

values

ASCII(),INSTR(),INSTRB(),LENGTH()

Character

functions

returning

character values

CHR(),CONCAT(),INITCAP(),LPAD(),LTRIM(),REPLACE(),RPAD(),R

TRIM(),SOUNDEX(),SUBSTR(),SUBSTRB(),TRANSLATE(),UPPER(),L

OWER()

Date functions ADD_MONTHS(),LAST_DAY(),MONTHS_BETWEEN(),NEXT_DAY()

RDBMS Concepts and Oracle 8i

173

,ROUND(),TRUNC()

Conversion

functions

TO_CHAR(),TO_DATE(),TO_NUMBER()

Other functions DUMP(),UID(),GREATEST(),LEAST(),NVL(),UID,USER,SYSDATE

10.5 Aggregate Functions

Aggregate functions are used to perform queries based on groups of rows rather than on a

single row. Also, group functions allow users to select summary information from groups of

rows. Following are the list of group functions.

Function Name Description

AVG() Computes the average of values

MAX() Finds the maximum of all values

MIN() Calculates the minimum value

COUNT() Counts the total number of values/records

SUM() Calculates the sum or total of all values

Following are the examples of the use these functions.

AVG(colname)

Calculates the average of the column name specified.

Example

SELECT AVG(sal) FROM EMP;

Displays the average of the sal column.

MAX(colname)

Example

SELECT MAX(qty) FROM ORDPRD;

This query displays the mazimum quantity in the ORDPRD table.

RDBMS Concepts and Oracle 8i

174

The output will be:

MAX(QTY)

 293

MIN(colname)

Example

SELECT MIN(qty) FROM ORDPRD;

This query displays the minimum quantity in the table.

The output will be:

MIN(QTY)

 2

COUNT(colname)

Displays the total number of column values for the column specified in the colname format.

Discards any NULL values for that column.

SELECT COUNT(empno) FROM emp;

COUNT(*)

This function returns the total number of records in a table. Includes NULL values also.

Example

SELECT COUNT(*) FROM emp;

GROUP BY Clause

RDBMS Concepts and Oracle 8i

175

Group By clauses are used to group selected rows and return a single row of summary

information. Expressions in the GROUP BY clause can contain any column name that appears

in the table. Consider a situation such that the total number of employees in each department

is to be listed out along with the department number. The following example illustrates this.

Example

SELECT deptno,COUNT(*) FROM emp GROUP BY deptno;

The above statement would display

DEPTNO COUNT(*)

--------- ---------

 10 3

 20 5

 30 6

Restrictions in using Group By clause

1. If a SELECT list contains any columns other than these in the aggregate functions, the

columns that appear in the Select list must be grouped and must appear in the GROUP

By clause.

2. If a SELECT list contains any nested aggregate functions, no other column names can

appear in the SELECT list and GROUP By must contain the column name on which the

nested aggregate functions are performed.

Having Clause

HAVING clause is used to restrict the groups of rows defined by the GROUP BY clause. This

is similar to the WHERE clause which acts as a filter to the SELECT clause. HAVING is used

along with GORUP BY clause. The order of precedence in a SELECT list are listed below:

1. If a query contains a WHERE clause, the rows which do not satisfy the condition are

removed.

RDBMS Concepts and Oracle 8i

176

2. Oracle calculates and forms the groups as specified in the GROUP BY clause.

3. Oracle removes the records that do not satisfy the condition in the HAVING clause.

Consider a situation where all the clerks in every department who lie within the specified

maximum and minimum salary must be displayed The minimum salary must not be less

than 1000 and the maximum salary must not exceed 5000. The following example performs

this checking.

Example

SELECT deptno,MIN(sal),MAX(sal) FROM emp WHERE job=’CLERK’

GROUP BY deptno

HAVING MIN(sal) >=1000 AND MAX(sal) <=5000;

The output looks like:

DEPTNO MIN(SAL) MAX(SAL)

------- ------- --------

 10 1300 1300

In this case, there is only one department that satisfies both the conditions.

The records are processed in this way:

First, the records where the job is not CLERK are eliminated. Next, the minimum and

maximum salary of every department is determined and the HAVING condition is

performed on the result of the rows selected by the GROUP BY clause.

Next, let us display the total number of employees in each department is displayed

designation wise. Also, the number of employees in each department and for each job must

exceed 2.

Example

SELECT job,deptno,COUNT(*) FROM emp GROUP BY job,deptno HAVING COUNT(*) >=2

ORDER BY deptno;

RDBMS Concepts and Oracle 8i

177

This query selects the deptno, job and the total count from the employee table and grouping

is done first on the job and then based on the deptno and the records are displayed where the

count is greater than or equal to 2..

The output would look like:

JOB DEPTNO COUNT(*)

--------- --------- ---------

ANALYST 20 2

CLERK 20 2

SALESMAN 30 4

10.6 Short Summary

Operators: They are used to manipulate individual data items and then return a result.

The different operators are classified based on the data on which they perform operations.

They are classified as:

• Arithmetic

• Character

• Relational

• Logical

• Set

Built-in Functions are used to perform specific task. The functions are classified based on the

arguments that they take:

• Numeric Functions

• Character Functions

• Date Functions

• Conversion Functions

• Other Functions

RDBMS Concepts and Oracle 8i

178

Aggregate Functions perform a group of values. They use the Group by clause to group the

values and display as an aggregate value. Having clause acts as a filter for the Grouped

Values.

10.7 Brain Storm

1. Prove In, Any, = Some are same.

2. Write a query to select managers from department 20

3. Select Lpad (‘Radiant’,5 ‘*”) from dual;

a. ***** Radiant

b. RTRIM(‘Radiant’, ‘*’)

c. Radia

d. None of the above

4. Prove Oracle is Y2K complain? (Hint: RR Format)

5. Write a query to find out whether given year is a leap year?

6. Select greatest (sal) from emp; observe the result and find out difference between

Max and Greatest.

7. Mention conversion functions with brief explanation?

8. If null values are present in Table for which we apply count function. What would be

the result?

RDBMS Concepts and Oracle 8i

 179

Lecture 11

Joins and Subqueries

Objectives

After completing this lesson, you should be able to do the following

 Discuss Joins and Subqueries

 Describe the joins tables

 Describe Subqueries

 Describe about Correlated subquery

 Describe about Inline query

 Discuss about pseudo columns

RDBMS Concepts and Oracle 8i

 180

Coverage Plan

Lecture 11

11.1 Snap shot

11.2 Joins tables

11.3 Sub-queries

11.4 Correlated sub-query

11.5 Inline query

11.6 Pseudo columns

11.7 Short summary

11.8 Brain Storm

RDBMS Concepts and Oracle 8i

 181

11.1 Snap Shot

For this chapter is to introduce the concepts of Joins and Subqueries. This chapter deals with

the various types of joins, Subqueries and usage of Pseudocolums like ROWID, ROWNUM,

and LEVEL.

• Cartesian Product

• Different Joins

• Equi-Join

• Self Join

• Outer Join

• Non-Equi Join

• Subqueries

• Correlated Subquery

• Pseudocolums

11.2 Joining Tables

Till now, we have seen querying being performed on only one table. If any information needs

to be queried from more than one table, a concept called JOINS is used. This allows data to be

selected from one or more tables and to combine the selected data into a single result table.

Cartesian Products

If a join condition is not specified, Oracle performs a Cartesian Product. Oracle combines each

row of one table with each row of the other. For example, if emp table contains 10 records and

dept table contains 4 records, the number of rows selected by the query without a join

condition yields 40 records. Always when data is selected from different tables, a join

condition is required.

Join Conditions

Most Join queries contain WHERE clause conditions that compare two columns, one from

each table. Such a condition is called a JOIN Condition. To execute a Join, Oracle combines

RDBMS Concepts and Oracle 8i

 182

pairs of rows, each containing one row from each table, for which the join condition evaluates

to TRUE. Joins can be of different types:

• Equi-Join

• Self Join

• Outer Join

• Non-Equi Join

Equi-Joins

This is the most common type of joins. This join contains a condition containing an equality

operator. An equi-join combines rows that have equivalent values for the columns specified

in the Join. A simple example for using Equi-Joins is shown below.

Example 11.1

 SELECT ename,dname FROM emp,dept WHERE emp.deptno=dept.deptno;

This would display all the e,ployees and their department names based on the outcome of the

join condition.

Here, emp.deptno=dept.deptno is the Join condition. The records are selected and displayed

when the condition is evaluated to TRUE.

The display will be:

ENAME DNAME

KING ACCOUNTING

BLAKE SALES

CLARK ACCOUNTING

JONES RESEARCH

MARTIN SALES

ALLEN SALES

TURNER SALES

RDBMS Concepts and Oracle 8i

 183

JAMES SALES

WARD SALES

FORD RESEARCH

SMITH RESEARCH

SCOTT RESEARCH

ADAMS RESEARCH

MILLER ACCOUNTING

Table Aliasing

In the previous query, the table names were specified in the Join condition since both the

tables had the same column name. In order to avoid any ambiguity in selecting the records,

table aliasing must be used. The table alias in the previous query is the table name itself. Any

alias name can be specified for the table which will be valid for that query alone. Refining the

above example,

SELECT ename, dname FROM emp e, dept d WHERE e.deptno=d.deptno;

The example given below displays the products ordered along with the customer name and

the product codes. This example is a join of 4 tables : product table, orders table, customer

table, ordprd table.

The following example is a join from more than 2 tables.

SELECT op.pcode,pname,cname FROM product p,orders o,ordprd op,customer c

WHERE c.ccode=o.ccode and

o.ocode=op.ocode and

op.pcode=p.pcode

Pcode Pname Cname

102 storewell Mohan

102 storewell Mohan

102 storewell Mohan

103 cinthol old Ramanath

RDBMS Concepts and Oracle 8i

 184

103 cinthol old Mohan

103 cinthol old Sridhar

103 cinthol old Ramanath

103 cinthol old Mohan

104 1.5 ton a/c Ramanath

105 1.0 ton a/c Ramanath

106 0.75 ton a/c Ramanath

106 0.75 ton a/c Mohan

106 0.75 ton a/c Sridhar

106 0.75 ton a/c Ramanath

107 puf refrigerator Ramanath

107 puf refrigerator Ramanath

107 puf refrigerator Ramesh

107 puf refrigerator Mohan

108 hair dye Ramesh

108 hair dye Selvam

Self Joins

Self joins are a type of joins where the join operation takes place within the same table.

Consider a situation where can organization needs a report of all the employee names along

with their managers name. For performing this query, the manager number is available in the

same table under mgr column. By equating the manager number with the employee number

can be selected the records. In order to query from the same table, a copy of the same table is

required in the SELECT list to display records. To differentiate the two tables, table aliasing is

used. The following query illustrates this concept.

Example 11.2

SELECT e1.ename ||' works for '||e2.ename FROM emp e1,emp e2 WHERE

e1.mgr=e2.empno;

Each record in table e1 is matched for the corresponding record in table e2. The records that

match the condition are selected and displayed.

RDBMS Concepts and Oracle 8i

 185

Outer Joins

The outer join extends the result of a simple join or equi join. Outer join returns all the rows

that satisfy the join condition and those rows from one table for which no rows from the other

table satisfy the join condition.

 In order to write a query that performs an outer join of table A and table B and records from

A, the outer join operator (+) is applied to all columns of B in the join condition. The example

given below performs this operation.

Example 11.3

Consider a situation product details where are the to be displayed for all the products

ordered as well as not ordered in a single query.9

This can be done using

SELECT a.pcode,b.ocode FROM product a, ordprd b WHERE a.pcode=b.pcode(+);

The above query displays all the product codes from the product table and all the order codes

from the ordprd table. In addition to this, the product codes available in the Product table

that do not exist in the ordprd table are also displayed. To achieve this, the (+) operator is

used.

Outer Joins are subject to the following restrictions:

• The (+) operator can appear only in the WHERE clause and can be applied only to a

column of a table or view.

• If two tables are joined by multiple conditions, the (+) operator must appear in all these

conditions.

RDBMS Concepts and Oracle 8i

 186

• A condition cannot use IN comparison operator to compare a column marked within the

(+) operator to another expression.

Non-Equi Joins

Non-Equi Joins specify the relationship between the tables not in terms of columns but in

terms of the relational operators or any comparison operators used. The following example

deals with this type of join:

Example 11.4

SELECT ename,grade FROM emp, salgrade WHERE sal BETWEEN losal AND hisal;

The relationship between the tables emp and salgrade are established using the values and

the BETWEEN operator.

11.3 Subqueries

A Sub-query is a query that can contain multiple query statements each nested within

another. The Sub-query is used to retrieve selected data from tables that depend on the values

in the table. It is also called as a nested query. Statement containing a subquery is called the

parent statement and the query inside is called the child query. The parent statement uses the

rows returned by the child query. Subqueries can be used in the following conditions:

• To define the set of rows to be inserted into the target table of a INSERT or CREATE

TABLE statement.

• To define one or more values to be assigned to existing rows of an UPDATE statement.

Consider a case where the details of an employee who earns the maximum salary must be

displayed. In such situations, first the maximum salary must be calculated. Then the

maximum salary must be compared with values in the emp table and their details must be

displayed. These 2 queries can be combined into a single query called sub-query.

Example 11.5

RDBMS Concepts and Oracle 8i

 187

SELECT ename,deptno,sal FROM emp WHERE sal=(SELECT MAX(sal) FROM emp);

In the above query, first the maximum salary is computed and the result is compared with

the parent query for the output.

The output will look like:

ENAME DEPTNO SAL

KING 10 5000

In the employee table the record with the employee name KING has the maximum salary of

5000.

Example 11.6

SELECT PCODE,PNAME FROM PRODUCT WHERE PCODE=

(SELECT PCODE FROM ORDPRD WHERE QTY=

(SELECT MAX(QTY) FROM ORDPRD))

The output will be:

PCODE PNAME

106 0.75 ton a/c

This example displays the product code and the product name from the product table for

which the ordered quantity is the maximum.

Using ANY,ALL,SOME operators

If the inner-query returns only one value, the outer query can process and display values that

match the condition. At all times, the inner-query may not return only one value. In these

RDBMS Concepts and Oracle 8i

 188

cases, the equality operator is used to check for the condition, which can check for utmost

only one value. If more than one value is selected, Oracle requires an operator that can check

and display the values. To do this operation ANY,ALL or SOME operators are used.

Any Operator

Consider the following query

SELECT ename,sal,deptno FROM emp WHERE sal >=ANY(SELECT AVG(sal) FROM emp

group by deptno);

This query displays the employee name,salary and the department number of employees

whose salary is greater than or equal to any of the values generated by the inner query. If any

of these operators are not used, Oracle generates an error message as shown below.

ERROR at line 1:

ORA-01427: single-row subquery returns more than one row

Some Operator

Consider the following query

SELECT ename,sal,deptno FROM emp WHERE sal >=SOME(SELECT Sum(sal) FROM emp

group by deptno);

This query works the same way as the ANY operator. There is no difference in the execution

of the query.

Note: ANY and SOME operators are equivalent to the OR operator and the IN operator.

All Operator

ALL operator is used to check for all the values returned by the list. The condition is checked

for all the values and the records that match all the values is displayed. Consider the

following example:

RDBMS Concepts and Oracle 8i

 189

SELECT pcode FROM ordprd WHERE qty >=ALL(SELECT AVG(qty) FROM ORDPRD GROUP

BY pcode)

Output will be:

PCODE

106

This example first calculates the average qty of all the products grouped by product code and

then checks for the product for which the qty is greater than or equal to the average qty. The

records for which the condition is satisfied are displayed.

EXISTS OPERATOR

The Outer query is executed if inner query evaluates to TRUE.

Example 11.7

SELECT DEPTNO, DNAME, LOC FROM DEPT WHERE EXISTS

(SELECT * FROM EMP)

The output looks like:

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

RDBMS Concepts and Oracle 8i

 190

11.4 Correlated Subquery

A Correlated subquery is a subquery that is evaluated once for every row processed by the

parent statement. For example, let us display the information of employees whose salary is

greater than the average salary of their own department.

The first query displays the deptno along with the average salary.

SELECT AVG(SAL),DEPTNO FROM EMP GROUP BY DEPTNO;

AVG(SAL) DEPTNO

2916.6667 10

2175 20

1566.6667 30

The following query displays the records where the matching condition is satisfied.

Example 11.8

SELECT EMPNO,ENAME,DEPTNO,SAL FROM EMP B WHERE SAL >=

(SELECT AVG(SAL) FROM EMP A WHERE A.DEPTNO=B.DEPTNO GROUP BY DEPTNO);

The execution works in the following manner:

1. The department number is obtained.

2. The department number is then equated with the Parent Statement

3. If that row’s salary is greater than the average salary that particular row is returned.

EMPNO ENAME DEPTNO SAL

7839 KING 10 5000

7698 BLAKE 30 2850

7566 JONES 20 2975

7499 ALLEN 30 1600

7902 FORD 20 3000

7788 SCOTT 20 3000

RDBMS Concepts and Oracle 8i

 191

For every parent record selected the inner-query is executed.

The following example displays the nth maximum salary:

Example 11.9

SELECT SAL FROM EMP A WHERE &N =

(SELECT COUNT(DISTINCT(SAL)) FROM EMP WHERE A.SAL <=SAL);

The output will be:

Enter value for n: 1
old 1: SELECT SAL FROM EMP A WHERE &N =

new 1: SELECT SAL FROM EMP A WHERE 1 =

SAL

5000

11.5 In-Line Queries

Inline Queries are a type of queries which can be selected from the ‘FROM’ clause of the select

statement.

Example 11.10

SELECT ENAME,DEPTNO FROM (SELECT * FROM EMP) WHERE DEPTNO=20;

The output will be:

ENAME DEPTNO

JONES 20

FORD 20

SMITH 20

SCOTT 20

RDBMS Concepts and Oracle 8i

 192

ADAMS 20

The following query displays the average salary of the employees along with their salary.

SELECT ENAME,SAL, X “AVERAGE SALARY” ,DEPTNO FROM (SELECT AVG(SAL) X,DEPTNO

B FROM EMP

GROUP BY DEPTNO),EMP WHERE DEPTNO=B;

The output will be:

ENAME SAL Average Salary DEPTNO

KING 5000 2916.6667 10

CLARK 2450 2916.6667 10

MILLER 1300 2916.6667 10

JONES 2975 2175 20

SCOTT 3000 2175 20

ADAMS 1100 2175 20

SMITH 800 2175 20

FORD 3000 2175 20

BLAKE 2850 1566.6667 30

MARTIN 1250 1566.6667 30

ALLEN 1600 1566.6667 30

TURNER 1500 1566.6667 30

JAMES 950 1566.6667 30

WARD 1250 1566.6667 30

11.6 Pseudo-columns

A pseudocolumn behaves like a column of a table, but it is not actually stored in the table.

Selection can be done from Pseudocolumns but DML operations are not possible. The

Pseudocolumns are listed below:

• ROWNUM

• ROWID

• LEVEL

• CURRVAL

• NEXTVAL

RDBMS Concepts and Oracle 8i

 193

(CURRVAL and NEXTVAL are dealt in the chapter on Sequences.)

Rownum

For each row returned by a query, the ROWNUM pseudocolumn returns a number indicating

the order in which Oracle retrieves the record. The ROWNUM holds a numeric value. For

example,

 Example 11.11

SELECT deptno,dname,ROWNUM FROM dept;

This query returns the department number along with the department name and the

ROWNUMber.

The output will be:

DEPTNO DNAME ROWNUM

10 ACCOUNTING 1

20 RESEARCH 2

30 SALES 3

40 OPERATIONS 4

Consider the next example which sorts the display based on the department name.

SELECT deptno,dname,ROWNUM FROM dept ORDER BY dname;

The output for this query will be:

DEPTNO DNAME ROWNUM

10 ACCOUNTING 1

40 OPERATIONS 4

20 RESEARCH 2

30 SALES 3

Here the display is changed. Sorting the department name does not result in changing the

row number since the row number is selected as soon as the record is retrieved from the table.

The next example shows condition based retrieval using ROWNUM.

RDBMS Concepts and Oracle 8i

 194

SELECT ename,deptno FROM emp WHERE ROWNUM > 1;

The output of this query will be:

no rows selected

The row number is assigned only after the selection is made. Here, even before the selection is

done, the WHERE condition is executed which results in no records being selected. Hence,

the row numbers are not assigned. This leads to the above output.

Rowid

A ROWID is created by Oracle for each new row in every table, and it is a pseudo column

and it has a value for every row in a table. The ROWID gives us the physical address of a row

and is the fastest way to access any row. The ROWID contains 4 bits of information, they are

:-

1. Object Id

2. The File Id within the Object

3. Block Id within the File

4. Row # within the block.

The ROWID has three important uses, it is :-

1. The fastest path to any row.

2. Unique identifier of any given row.

A ROWID does not change during the lifetime of a row. However, it must not be used as a

primary key.The ROWID of a deleted record may be assigned to a new record that is inserted

later.

 Example 11.12

SELECT ROWID, ENAME FROM EMP WHERE DEPTNO=20;

RDBMS Concepts and Oracle 8i

The output of this query is ,

ROWID ENAME

AAAApVAAFAAAACZAAD JONES

AAAApVAAFAAAACZAAJ FORD

AAAApVAAFAAAACZAAK SMITH

AAAApVAAFAAAACZAAL SCOTT

AAAApVAAFAAAACZAAM ADAMS

In the above output,

AAAApV represents Object Id (6 bytes)

AAF represents the File Id (3 bytes)

AAAACZ represents Block Id (6 bytes)

AAD represents Row Id (3 bytes)

Level

For each row returned by a hierarchical query, the LEVEL pseudocolumn returns 1 for the

root node, 2 for a child node and so on. A root node is the highest node within an inverted

tree. A child node is any non-root node. A parent node is any row that has children. A leaf

node is any row without children. The following figure shows the nodes of an inverted tree

with their LEVEL values.

 195

RDBMS Concepts and Oracle 8i

 196

To define the hierarchical relationship in a query, use START WITH and CONNECT BY

clause. The following example illustrates this:

SELECT LPAD(ENAME,10*LEVEL) FROM EMP

START WITH MGR IS NULL

CONNECT BY MGR=PRIOR EMPNO;

The output of this query will be:

LPAD(ENAME,10*LEVEL)

--

 KING

 BLAKE

 MARTIN

 ALLEN

 TURNER

 JAMES

 WARD

 CLARK

 MILLER

 JONES

 FORD

 SMITH

 SCOTT

 ADAMS

Since King is the top most employee, the execution will start with the start with clause and

the next connection will be based on CONNECT BY clause.

In this example CONNECT BY MGR=PRIOR EMPNO compares the last selected empno (first

King’s employee no) with the matching manager No’s in Manager Column and displays

those records under KING and so on.

11.7 Short Summary

Joins – Joins are used to join one or more tables. The condition that appears in the WHERE

clause is called Join Condition.

Joins can be of different types;

• Equi Join

RDBMS Concepts and Oracle 8i

 197

• Self Join

• Outer Join

• Non-Equi Join

Subqueries – Subqueries are a type of queries where multiple statements can be embedded.

Correlated Subquery – A subquery which gets evaluated for each and every parent query

execution.

PseudoColumns appear as a column in a table but are not part of the table.

Rowid – Identifies the physical address of a row

Rownum – Number that is assigned in the SELECT statement for each and every record

selected.

11.8 Brain Storm

1. If a problem can be solved using joins and subqueries, Which works faster?

2. For how many tables can we set join condition in a single query?

3. Do you need a common column to set a join condition?

4. What is Cartesian Product?

5. Differentiate between Normal Subquery and Correlated Subquery?

6. Explain Self Join?

7. What is Pseudo Column?

8. Which Pseudo Column is used in Autogeneration of Numbers?

9. Observe Rownum in query which has order by clause?

10. Get details of employee in an ascending order of ename [Hint: Without using order by].

RDBMS Concepts and Oracle 8i

198

Lecture 12

Database Objects

Objectives

After completing this lesson, you should be able to do the following

 Discuss the Database Objects

 Describe privileges

 Describe Synonyms and Sequences

 Understanding Database Structures

 Discuss Access Methodologies

RDBMS Concepts and Oracle 8i

199

Coverage Plan

Lecture 12

12.1 Snap shot

12.2 Privileges

12.3 Database objects

12.4 Synonyms

12.5 Sequences

12.6 Understanding database structure

12.7 Access methodologies

12.8 Short summary

12.9 Brain Storm

RDBMS Concepts and Oracle 8i

200

12.1 Snap Shot

In this Lecture we learn the following concepts they are privileges, different Database Objects.

This chapter introduces the usage of Views, Synonyms and Sequences. Access Methodologies

such as Indexes and Clusters are also dealt with.

• Granting Privileges

• Revoking Privileges

• Creating Views

• Creating Synonyms

• Creating Sequences

• Working with Indexes and Clusters

12.2 Privileges

A privilege is a right to execute a particular type of SQL statement or to access another user's

object. Some examples of privileges include the right to

• create a table

• select rows from another user's table

• Execute other procedures, functions etc.

Granting and Revoking System Privileges

GRANT or REVOKE is used to give system privileges to users. System privileges are granted

to or revoked from users using the following:

The SQL commands GRANT and REVOKE

The DELETE, INSERT, SELECT, and UPDATE privileges allow the DELETE, INSERT,

SELECT, and UPDATE DML operations, respectively, on a table or view.

The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be

performed on a table.

RDBMS Concepts and Oracle 8i

201

The one object privilege for procedures (including standalone procedures and functions, and

packages) is EXECUTE. You should grant this privilege only to users who need to execute a

procedure.

Syntax:

To grant a privilege:

Grant <privilege name> on <tablename> to <username>;

To revoke a privilege

Revoke <privilege name> on <tablename> from <username>;

Example:

To grant a select privilege to a user B from A, use

GRANT SELECT ON EMP TO B;

DISPLAYS,

Grant succeeded.

While revoking ,

REVOKE select on emp from b;

Revoke succeeded.

12.3 Database Objects

Database Objects are the schema objects. The various database objects are listed below:

• Tables

• Views

• Synonyms

• Sequences

• Indexes

• Clusters

Out of these, tables are already dealt.

RDBMS Concepts and Oracle 8i

202

12.3.1 Views

Views are a tailored presentation of the data contained in one or more tables or views. A view

takes the output of a query and displays it. Views contain queries which are selected from

one or more tables or inturn views itself. These are called Base tables. Views provide the

following advantages:

Restricted Access to specific columns of a table thereby providing additional security. They

hide data complexity. They are used to simplify commands since the queries that are issued

very frequently can be placed inside a view and the view can just be selected.

Direct DML operations are possible on Views with some restrictions.

Based on the query contained in the definition of a view, Views can be classified into three

types

• Simple

• Join

• Force

12.3.2 Creating a Simple view

Views are created using the Create command. The defintion of the view will contain the

column names given in the query. Syntax for Creating a View:

Syntax:

CREATE OR REPLACE VIEW <viewname> AS <query>;

Example:

This creates a simple view with records selected from the Employee Table

CREATE OR REPLACE VIEW empview AS SELECT ename,deptno,sal FROM emp;

This displays the feedback

View created.

RDBMS Concepts and Oracle 8i

203

From now on, querying need not be done from the EMP table. The records can be queried

using the View as shown below:

SELECT * FROM empview;

Displays,

ENAME SAL DEPTNO

---------- --------- ------

KING 5000 10

BLAKE 2850 30

CLARK 2450 10

JONES 2975 20

MARTIN 1250 30

ALLEN 1600 30

TURNER 1500 30

JAMES 950 30

WARD 1250 30

FORD 3000 20

SMITH 800 20

SCOTT 3000 20

ADAMS 1100 20

MILLER 1300 10

Any DML operations can be made to this view. Records inserted through the view will be

effected in the base table and vice versa. But not all columns can be inserted through the

view. Only the column names that appear in the select list of the query can be inserted or

updated.

There are some Restrictions on performing DML operations. They are:

If a view is defined by a query that contains SET or DISTINCT operators, a GROUP BY

clause, or a group function, rows cannot be inserted into, updated in, or deleted from the base

tables using the view.

If a view is defined with the WITH CHECK OPTION, a row cannot be inserted into, or

updated in, the base table (using the view) if the view cannot select the row from the base

table.

RDBMS Concepts and Oracle 8i

204

If a NOT NULL column that does not have a DEFAULT clause is omitted from the view, a

row cannot be inserted into the base table using the view.

If the view was created by using an expression, such as DECODE(deptno, 10, 'SALES', ...),

rows cannot be inserted into or updated in the base table using the view.

A View creation cannot contain an ORDER BY clause.

12.3.3 Creating Force Views

Even if the Sometimes a table may be created at a later time for which a view nust be created

first. In those cases, a view can be created for the tables that are not available but querying

cannot be performed. The keyword FORCE is used to do this:

Syntax:

CREATE OR REPLACE FORCE VIEW FV AS <QUERY>;

Example:

CREATE OR REPLACE FORCE VIEW fv AS SELECT * FROM students;

This view generates an output like:

Warning: View created with compilation errors.

Selection from the view is not possible till the table is created. Only then the view becomes

valid. Before the table is created, the querying from the View will result in:

SELECT * from fv;

SELECT * from fv

 *

ERROR at line 1:

ORA-04063: view "HEMA.FV" has errors

12.3.4 Views with Constraints

Consider the following example:

RDBMS Concepts and Oracle 8i

205

Example

CREATE OR REPLACE VIEW empview1 AS SELECT EMPNO,ENAME,DEPTNO,SAL FROM emp

WHERE SAL >=3000;

Insertion onto this view is possible. A record can be inserted which violates the WHERE

clause. But while selecting only the WHERE clause is checked and the records that match the

condition are only displayed. If a WHERE condition must be checked while inserting records

through a view, CHECK OPTION is used. The example illustrates this:

CREATE OR REPLACE VIEW empview1 AS SELECT EMPNO,ENAME,DEPTNO,SAL FROM emp

WHERE SAL >=3000 WITH CHECK OPTION;

If any DML operation which violates the WHERE clause is issued, Oracle raises the following

error:

INSERT INTO empview1 VALUES(14,'Suresh',20,1000);

INSERT INTO empview1 VALUES(14,'Suresh',20,1000)

 *

ERROR at line 1:

ORA-01402: view WITH CHECK OPTION where-clause violation

12.3.5 Read-Only Views

Certain Views can be created for selection purpose alone. Those views will not permit a user

or the owner of the view to perform any DML operation. The example shows this view:
CREATE OR REPLACE VIEW read_view AS

SELECT * FROM dept WITH READ ONLY;

View created.

INSERT INTO read_view VALUES(50,'Purchase','Texas');

INSERT INTO read_view VALUES(50,'Purchase','Texas')

*

ERROR at line 1:

ORA-01733: virtual column not allowed here

RDBMS Concepts and Oracle 8i

206

12.3.6 Join Views

Joining of tables results in creation of Join Views. Join View is a view that is created out of a

Join condition. There are certain restrictions in Join Views. Assume a situation where the

employee name along with the department name must be displayed. The join condition can

be used here. The following example shows this:

CREATE OR REPLACE VIEW join_view AS

SELECT empno,ename,dept.deptno,dname FROM emp,dept WHERE

emp.deptno=dept.deptno;

When this view is selected, this results in:

sql> SELECT * FROM join_view;

EMPNO ENAME DEPTNO DNAME

------ ------- ------- ------------

7839 KING 10 ACCOUNTING

7698 BLAKE 30 SALES

7782 CLARK 10 ACCOUNTING

7566 JONES 20 RESEARCH

7654 MARTIN 30 SALES

7499 ALLEN 30 SALES

7844 TURNER 30 SALES

7900 JAMES 30 SALES

7521 WARD 30 SALES

7902 FORD 20 RESEARCH

7369 SMITH 20 RESEARCH

7788 SCOTT 20 RESEARCH

7876 ADAMS 20 RESEARCH

7934 MILLER 10 ACCOUNTING

Inserting records onto the view will insert records in emp table and dept table.
INSERT INTO join_view VALUES(15,'radhika',50,'purchase');

INSERT INTO join_view VALUES(15,'radhika',50,'purchase')

*

ERROR at line 1:

ORA-01776: cannot modify more than one base table through a join view

RDBMS Concepts and Oracle 8i

207

View cannot directly insert into more than one base table. In order to perform this INSTEAD

OF Triggers are used. This view can insert only onto one table.

Key-Preserved Tables

The concept of a key-preserved table is fundamental to understanding the restrictions on

modifying join views. A table is key preserved if every key of the table can also be a key of

the result of the join. So, a key-preserved table has its keys preserved through a join.

Note: It is not necessary that the key or keys of a table be selected for it to be key preserved. It is sufficient that if the

key or keys were selected, then they would also be key(s) of the result of the join.

Attention: The key-preserving property of a table does not depend on the actual data in the

table. It is, rather, a property of its schema and not of the data in the table. For example, if in

the EMP table there was at most one employee in each department, then DEPT.DEPTNO

would be unique in the result of a join of EMP and DEPT, but DEPT would still not be a key-

preserved table.

12.3.7. Dropping Views

Dropping Views can be done using the statement:

DROP VIEW <viewname>;

12.4. Synonyms

A synonym is a database object, which is used as an alias name for any object. The main

advantages of using Synonyms are:

 Simplify SQL statements

Hide the real identity of an object

Use in database links

RDBMS Concepts and Oracle 8i

208

Synonyms can be Public or private. Synonyms created as a Public Synonym are accessible to

all users. The Public synonyms are owned by the user group PUBLIC and can be dropped

only by a DBA.

Syntax for creating a synonym name:

Syntax:
CREATE SYNONYM <synonymname> FOR <objectname>;

Example:
CREATE SYNONYM synemp FOR EMP;

SELECT * FROM synemp will display all the employee records in the emp table.

From now on, querying can be done using the synonym synemp. Also using this synonym,

DML operations can be performed. Synonyms can be created for non-existing objects also.

The problem comes only when querying is done on the synonym. This example creates a

synonym for a non-existing object.

CREATE SYNONYM s1 FOR TESTSS;

Synonym created.

SELECT * FROM s1;

SELECT * FROM s1

 *

ERROR at line 1:

ORA-00980: synonym translation is no longer valid

Dropping Synonyms

Dropping of Synonyms can be done using the Drop command:

DROP SYNONYM synemp;

12.5 Sequences

Sequences are a set of database objects which can generate unique or sequential integer value.

They are used for automatically generating primary key or unique key values. A sequence

can be created in ascending or descending order.

RDBMS Concepts and Oracle 8i

209

12.5.1 Creating Sequences

CREATE SEQUENCE command is used to create sequences. The syntax for creating

Sequences are:

Syntax:

CREATE SEQUENCE <SEQUENCENAME>

[<INCREMENT BY> <VALUE>

<START WITH> <VALUE>

<MINVALUE> <VALUE>

<MAXVALUE> <VALUE>

<CACHE> <VALUE>

<CYCLE> <VALUE>

where,

INCREMENT BY - Specifies the interval between 2 integers. Can be a positive or

negative value but not zero.

START WITH - Specifies the first sequence number to be generated.

MINVALUE - Indicates the minimum value in the sequence It must be less

 than or equal to START WITH and less than MAXVALUE.

MAXVALUE - Specifies the maximum value the sequence can generate.

CYCLE - Indicates that sequence continues to generate values after

 reaching maximum values.

CACHE - Specifies how many values must be kept in memory for

 faster access.

RDBMS Concepts and Oracle 8i

210

 Example

CREATE SEQUENCE s1

START WITH 1

MINVALUE 1

INCREMENT BY 1

MAXVALUE 20

CYCLE

CACHE 15;

Displays,

Sequence Created.

12.5.2. Referencing Sequences

A sequence is referenced in SQL statements using NEXTVAL and CURRVAL

pseudocolumns. NEXTVAL indicates the sequence ‘s new number and CURRVAL indicates

the current sequence number.

Example:

SELECT s1. NEXTVAL FROM dual;

Displays

 NEXTVAL

 1

They can be used in Insert operations also.

INSERT INTO emp(empno,ename,job)

VALUES(s1.NEXTVAL,’sita’,’manager’);

The record will be inserted where the employee number will be the the value stored in the

NEXTVAL pseudocolumn.

RDBMS Concepts and Oracle 8i

211

12.5.3. Altering a sequence

Sequences can be altered to perform: Set or eliminate minimum or maximum value or

altering the incremental values or changing the number of cached sequence numbers.

ALTER SEQUENCE s1 MAXVALUE 25;

12.6 Understanding Database Structure

An Oracle database is a collection of data that is treated as a unit. The general purpose of a

database is to store and retrieve related information. The database has logical structures and

physical structures.

Logical Database Structure

Logical Database Structures contains various divisions such as tablespace, schema objects,

data blocks, extents and segments. The following sections explain this.

Tablespaces

A database is divided into logical storage units called tablespaces. A tablespace is used to

group related logical structures together. For example, tablespaces commonly group all of an

application's objects to simplify certain administrative operations.

Schemas and Schema Objects

A schema is a collection of objects. Schema objects are the logical structures that directly refer

to the database's data. Schema objects include such structures as tables, views, sequences,

stored procedures, synonyms, indexes, clusters, and database links. (There is no relationship

between a tablespace and a schema; objects in the same schema can be in different

tablespaces, and a tablespace can hold objects from different schemas.)

RDBMS Concepts and Oracle 8i

212

Oracle Data Blocks

At the finest level of granularity, an Oracle database's data is stored in data blocks. One data

block corresponds to a specific number of bytes of physical database space on disk. A data

block size is specified for each Oracle database when the database is created. A database uses

and allocates free database space in Oracle data blocks.

Extents

The next level of logical database space is called an extent. An extent is a specific number of

contiguous data blocks, obtained in a single allocation, used to store a specific type of

information.

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of

extents allocated for a certain logical structure. For example, the different types of segments

include the following:

Data Segment

Each non-clustered table has a data segment. All of the table's data is stored in the extents of

its data segment. Each cluster has a data segment. The data of every table in the cluster is

stored in the cluster's data segment.

Index Segment

Each index has an index segment that stores all of its data.

Rollback Segment

One or more rollback segments are created by the database administrator for a database to

temporarily store "undo" information.

RDBMS Concepts and Oracle 8i

213

Temporary Segment

Temporary segments are created by Oracle when a SQL statement needs a temporary work

area to complete execution. When the statement finishes execution, the temporary segment's

extents are returned to the system for future use.

Physical Database Structures

The following sections explain the physical database structures of an Oracle database,

including datafiles, redo log files, and control files.

Datafiles

Every Oracle database has one or more physical datafiles. A database's datafiles contain all

the database data. The data of logical database structures such as tables and indexes is

physically stored in the datafiles allocated for a database. The following are characteristics of

datafiles:

A datafile can be associated with only one database.

Database files can have certain characteristics set to allow them to automatically extend when

the database runs out of space.

12.7 Access Methodologies

The performance of an application is always critical. That’s because the productivity of an

application user directly relates to the amount of time that the user must sit idle while the

application tries to complete work. With database applications,performance depends greatly

on how fast an application can access table data.Typically, disk I/O is the primary

performance determining factor for table access-the less disk I/O that’s necessary to access

table data, the better the dependent applications will perform. In general, it’s best to try and

minimize the amount of disk access that applications must perform when working with

database tables.

RDBMS Concepts and Oracle 8i

214

The judicious use of table indexes is the principal method to reduce disk I/O and improve the

performance of table access. Just like an index in a book, an index of a table column (a set of

columns) allows Oracle to quickly find specific table records. When an application queries a

table and uses an indexed column in its selection criteria. Oracle automatically uses the index

to quickly find the target rows with minimal disk I/O, Without an index, Oracle has to read

the entire table from disk to locate rows that match a selection criteria.

The presence of an index for a table is entirely optional and transparent to users and

developers of database applications. For example, Applications can access table data with or

without associated indexes.

When an index is present and will help the performance of an application request, Oracle

automatically uses the index; otherwise, Oracle ignores the index.

Oracle automatically updates an index to keep it in synch with its table .

Although indexes can dramatically improve the performance of application request, it’s

unwise to index every column in a tabel. Indexes are meaningful only for the key columns

that application requests specifically use to find rows of interest. Furthermore, index

maintenace generates overhead-unnecessary indexes can actually slow down your system

rather thatn improve its performance.

Oracle8 supports several different types of indexes to satisfy many types of application

requirements. The following sections explain more about the various types of indexes that

you can create for a table’s columns.

When an index is created, Oracle fetches and sorts the columns to be indexed and stores the

ROWID along with index value for each row. Oracle loads the index from the bottom up.

They are logically and physically independent of the data associated with the tables.

How Indexes Are Stored

When you create an index, Oracle automatically allocates an index segment to hold the

index's data in a tablespace.

RDBMS Concepts and Oracle 8i

The tablespace of an index's segment is either the owner's default tablespace or a tablespace

specifically named in the CREATE INDEX statement. You do not have to place an index in

the same tablespace as its associated table

The Internal Structure of Indexes

Oracle uses B*-tree indexes that are balanced to equalize access times to any row. The

following figure illustrates this:

The upper blocks (branch blocks) of a B*-tree index contain index data that points to lower

level index blocks. The lowest level index blocks (leaf blocks) contain every indexed data

value and a corresponding ROWID used to locate the actual row; the leaf blocks are doubly

linked. Indexes in columns containing character data are based on the binary values of the

characters in the database character set.

For a unique index, there is one ROWID per data value. For a non-unique index, the ROWID

is included in the key in sorted order, the index key and ROWID sort so non-unique indexes.

Key values containing all nulls are not indexed, except for cluster indexes. Two rows can both

contain all nulls and not violate a unique index.

Advantages of B*-tree Structure

The B*-tree structure has the following advantages:

215

RDBMS Concepts and Oracle 8i

216

All leaf blocks of the tree are at the same depth, so retrieval of any record from anywhere in

the index takes approximately the same amount of time.

• B*-tree indexes automatically stay balanced.

• All blocks of the B*-tree are three-quarters full on the average.

• B*-trees provide excellent retrieval performance for a wide range of queries, including

exact match and range searches.

• Inserts, updates, and deletes are efficient, maintaining key order for fast retrieval.

• B*-tree performance is good for both small and large tables, and does not degrade as the

size of a table grows.

What Is a Bitmap Index?

Oracle provides five indexing schemes: B*-tree indexes (currently the most common), B*-tree

cluster indexes, hash cluster indexes, reverse key indexes, and bitmap indexes. These

indexing schemes provide complementary performance functionality.

The purpose of an index is to provide pointers to the rows in a table that contain a given key

value.

In a regular index, this is achieved by storing a list of rowids for each key corresponding to

the rows with that key value. (The Oracle Server stores each key value repeatedly with each

stored rowid.)

In a bitmap index, a bitmap for each key value is used instead of a list of rowids. Each bit in

the bitmap corresponds to a possible rowid, and if the bit is set, it means that the row with the

corresponding rowid contains the key value.

A mapping function converts the bit position to an actual rowid, so the bitmap index

provides the same functionality as a regular index even though it uses a different

representation internally. If the number of different key values is small, bitmap indexes are

very space efficient.

RDBMS Concepts and Oracle 8i

217

Bitmap indexing efficiently merges indexes that correspond to several conditions in a

WHERE clause. Rows that satisfy some, but not all conditions are filtered out before the table

itself is accessed. As a result, response time is improved, often dramatically.

Cardinality

The advantages of using bitmap indexes are greatest for low cardinality columns: that is,

columns in which the number of distinct values is small compared to the number of rows in

the table. If the values in a column are repeated more than a hundred times, the column is a

candidate for a bitmap index. Even columns with a lower number of repetitions (and thus

higher cardinality), can be candidates if they tend to be involved in complex conditions in the

WHERE clauses of queries.

For example, in a table with one million rows, a column with 10,000 distinct values is a

candidate for a bitmap index. A bitmap index on this column can out-perform a B*-tree index,

particularly when this column is often queried in conjunction with other columns.

B*-tree indexes are most effective for high-cardinality data: that is, data with many possible

values, such as CUSTOMER_NAME or PHONE_NUMBER. A regular B*-tree index can be

several times larger than the indexed data. Used appropriately, bitmap indexes can be

significantly smaller than a corresponding B*-tree index.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve query

performance. AND and OR conditions in the WHERE clause of a query can be quickly

resolved by performing the corresponding boolean operations directly on the bitmaps before

converting the resulting bitmap to rowids. If the resulting number of rows is small, the query

can be answered very quickly without resorting to a full table scan of the table.

Bitmap Index Example

Table 12-1 shows a portion of a company's employee data.

EMPLOYEE_

NO
NAME JOB DEPTNO SALARY

101 CLARK MANAGER 10 1000

102 SCOTT SALESMAN 10 3000

RDBMS Concepts and Oracle 8i

218

103 WARD SALESMAN 20 2000

104 ALLAN MANAGER 20 1000

105 MILLER CLERK 10 2444

106 FORD ANALYST 20 5643

Table 12-1: Bitmap Index Example

Since NAME, JOB, DEPTNO, SALARY are all low-cardinality columns. It is appropriate to

create bitmap indexes on these columns. A bitmap index should not be created on

EMPLOYEE # because this is a high-cardinality column. Instead, a unique B*-tree index on

this column in order would provide the most efficient representation and retrieval.

DEPTNO=10 DEPTNO=20

1 0

1 0

0 1

0 1

1 0

0 1

Table 12-2: Sample Bitmap

Each entry (or "bit") in the bitmap corresponds to a single row of the EMPLOYEE table. The

value of each bit depends upon the values of the corresponding row in the table. For instance,

the bitmap DEPTNO=10 contains a one as its first bit: this is because the deptno is 10 in the

first row of the EMPLOYEE table.

A sample query for a bitmap example:

SELECT COUNT(*) FROM EMPLOYEE

 WHERE JOB=’manager’ and deptno IN (10,20);

Bitmap indexes can process this query with great efficiency by merely counting the number

of ones in the resulting bitmap.

RDBMS Concepts and Oracle 8i

219

Unique indexes

Unique Indexes are indexes that are defined on columns, which ensure that no two rows can

hold the same values. In other words, it avoids duplication of values.

For example, Primary Key and unique constraints are by default creates unique index.

Composite Indexes

Composite Indexes are indexes that get created on more than one column. Sorting is done

based on the leading column and then on the subsequent column given inside the index.

They are also called as Concatenation Index.

Creating Indexes

Indexes can be created in the following ways:
Create index <indexname> ON <tablename>(<columnname>);

Example:

CREATE INDEX i1 ON emp(JOB);

Dropping Indexes

Index can be dropped by using Drop command.

Syntax:

Drop index <indexname>;

Example:

DROP INDEX I1;

Clusters

Clusters are an optional method of storing table data. A cluster is a group of tables that share

the same data blocks because they share common columns and are often used together.

RDBMS Concepts and Oracle 8i

220

For example, the EMP and DEPT table share the DEPTNO column. When you cluster the

EMP and DEPT tables. Oracle physically stores all rows for each department from both the

EMP and DEPT tables in the same data blocks.

Because clusters store related rows of different tables together in the same data blocks,

properly used clusters offer two primary benefits:

Disk I/O is reduced and access time improves for joins of clustered tables.

In a cluster, a cluster key value is the value of the cluster key columns for a particular row.

Each cluster key value is stored only once each in the cluster and the cluster index, no matter

how many rows of different tables contain the value.

Therefore, less storage might be required to store related table and index data in a cluster

than is necessary in non-clustered table format.

For example, notice how each cluster key (each DEPTNO) is stored just once for many rows

that contain the same value in both the EMP and DEPT tables.

The Cluster Key

The cluster key is the column, or group of columns, that the clustered tables have in common.

You specify the columns of the cluster key when creating the cluster. You subsequently

specify the same columns when creating every table added to the cluster.

For each column specified as part of the cluster key (when creating the cluster), every table

created in the cluster must have a column that matches the size and type of the column in the

cluster key. No more than 16 columns can form the cluster key, and a cluster key value cannot

exceed roughly one-half (minus some overhead) the available data space in a data block. The

cluster key cannot include a LONG or LONG RAW column.

You can update the data values in clustered columns of a table. However, because the

placement of data depends on the cluster key, changing the cluster key for a row might cause

Oracle to physically relocate the row. Therefore, columns that are updated often are not good

candidates for the cluster key.

RDBMS Concepts and Oracle 8i

221

The Cluster Index

You must create an index on the cluster key columns after you have created a cluster. A

cluster index is an index defined specifically for a cluster. Such an index contains an entry for

each cluster key value. To locate a row in a cluster, the cluster index is used to find the cluster

key value, which points to the data block associated with that cluster key value. Therefore,

Oracle accesses a given row with a minimum of two I/Os (possibly more, depending on the

number of levels that must be traversed in the index).

The following Example illustrates the creation of Clusters

• Create a cluster for the common column.

• Create an index for the cluster

• Create the table along with clusters

Without creating indexes, records cannot be inserted. The following example creates the

cluster along with tables.

CREATE CLUSTER CLEMP(deptno NUMBER(3));

Create index clind on cluster clemp;

Create table dept (deptno number(3),dname varchar2(20),loc varchar2(20))

cluster clemp(deptno);

Create table emp(empno number,ename varchar2(20),deptno number(3)) cluster

clemp(deptno);

When records are selected, the rowid of the first deptno will be the same.

Output:

SELECT ROWID FROM CLUSTER clemp;

ROWID

AAAAzmAAFAAAAJ+AAA

AAAAzmAAFAAAAJ/AAA

AAAAzmAAFAAAAKAAAA

AAAAzmAAFAAAAKBAAA

AAAAzmAAGAAAAIAAAA

RDBMS Concepts and Oracle 8i

222

Dropping Clusters

Clusters are dropped using DROP CLUSTER command.

Example:

DROP CLUSTER CLEMP INCLUDING TABLES;

12.8 Short Summary

Privileges are the right to execute a particular SQL statement. They can be granted and

revoked using GRANT and REVOKE statements respectively.

Database objects can be classified as

Views - Used as a tailor made presentation of a query

Views can be of Simple View, Join View or Force view. Views created out of a Join condition

can be manipulated with some restrictions.

Synonyms – They are alias name for an object

Sequences – Created for automatic generation of numbers

Indexes – Used to improve performance on columns that appear in WHERE clause often.

Clusters – They are another performance techniques that improve queries on joins.

12.9 Brain Storm

1. What is a View?

2. Can create command of view have order by clause.

RDBMS Concepts and Oracle 8i

223

3. What is Force View?

4. What is Key preserved Table & Non preserved table? Is Non Key preserved table

updateable? Explain.

5. What are the different types of Views?

6. Which views are updateable? Mention non-updateable views.

7. How to document Sequence Value?

8. Which parameters in Sequence can be altered?

9. What is Synonym? How does it differ from View?

10. What are the different types of Synonyms?

11. What is Cluster?

12. Mention disadvantages of Clusters?

13. Can Long & Long Raw columns be indexed?

RDBMS Concepts and Oracle 8i

224

Lecture 13

Introduction to PL/SQL

Objectives

After completing this lesson, you should be able to do the following

 Discuss the Introduction to PL/SQL

 Describe PL/SQL Architecture

 Discuss the Declares Variables

 Describe about Control Structures

 Describe Iteration Control

RDBMS Concepts and Oracle 8i

225

Coverage Plan

Lecture 13

13.1 Snap shot

13.2 Introduction to pl/sql

13.3 Pl/sql architecture

13.4 Declares variables

13.5 Control structures

13.6 Iteration control

13.7 Short summary

13.8 Brain Storm

RDBMS Concepts and Oracle 8i

226

13.1 Snap Shot

This chapter deals with the Procedural Language extension to SQL, its advantages in the

programming aspect and the complete architecture of PL/SQL. This chapter also deals with

various controls structures, Iterative control statements.

• Introduction to PL/SQL

• Architecture of PL/SQL

• Different types of Blocks

• PL/SQL Delimiters

• Writing simple programs

• Working with Control Structures

• Using Loop statements

13.2 Introduction to PL/SQL

Oracle’s PL/SQL is a procedural language extension of SQL. It is the standard programming

language for Oracle RDBMS and follows the procedural approach. It also provides

conditional constructs like IF.. THEN, WHILE LOOP which are available in other languages

like C, Pascal, COBOL.PL/SQL is very powerful as it combines the flexibility available in SQL

with the procedural constructs. Oracle’s PL/SQL adds a lot of additional capabilities to

Oracle programming in order to do validations, customization, include user interfaces and

handling errors effectively.

What is PL/SQL?

PL/SQL is a block-structured language. The basic unit of PL/SQL is called a BLOCK, which

contains declarative statements, executable statements and error handling statements. These

blocks can be nested into one or more blocks.

Features of PL/SQL

• Allows users to embed one or more SQL statements together and execute as a single SQL

unit.

• Allows declaration of variables.

RDBMS Concepts and Oracle 8i

227

• Allows usage of conditional constructs

• Allows programming of error-handling using exceptions

• Allows row-by-Row processing of data using cursors

• Allows triggers to be created and fired.

Advantages of PL/SQL

SQL Support

SQL has become the standard database language because it is flexible, powerful and easy to

learn. Since it is a non-procedural language, a user need not know how the statements are

processed but just needs to indicate the requirement.

PL/SQL allows the usage of all kinds of SQL data manipulation, cursor control and

transaction control statements as well as all the SQL functions, operators and pseudocolumns.

Better performance

Without PL/SQL Oracle would process SQL statements one at a time. Each SQL statement

results in another Oracle call to Oracle and higher performance overhead. Since PL/SQL can

contain SQL statements, all the SQL statements can be placed inside PL/SQL thereby

reducing the time taken for communication between the server and the application. This

reduces network traffic and results in better performance.

Support for Object Oriented Programming

Oracle implements the concept of object oriented programming. This allows the creation of

software components that are modular, maintainable and reusable. Using encapsulation

operations with the data object types lets users to move data-maintenance codes out of SQL

scripts and PL/SQL blocks into methods.

Portability

Applications written in PL/SQL provide portability to the operating system and platform on

which they runs. These applications can run wherever Oracle can run.

RDBMS Concepts and Oracle 8i

228

Higher Productivity

PL/SQL adds functionality to Oracle’s non-procedural tools like Forms and Reports. These

tools can help to build applications using familiar procedural constructs. PL/SQL does not

differ in environments. It works the same way as it works for other built-in tools. Also any

scripts written using one tool can be used by another tool.

Integration with Oracle

Oracle and PL/SQL are based on SQL statements. It supports all the SQL Datatypes. These

Datatypes integrate PL/SQL with the Oracle Data dictionary.

13.3 PL/SQL Architecture

Before discussing the architecture of a PL/SQL block, the basic unit of a PL/SQL which is a

block needs to be understood. A PL/SQL block contains three parts:

• Declarative part

• Executable part

• Error handling part

Declarative Part

This is the first section of a PL/SQL block. This section is used to declare variables, and

constants. Every declaration or definition has a memory allocated in the session’s memory.

The keyword DECLARE represents this part.

Syntax:

DECLARE

 Set of variables

Executable Part

RDBMS Concepts and Oracle 8i

This part contains all the SQL and PL/SQL statements, which are used for querying and

processing the data. BEGIN is used to mark the beginning of the block and END ends the

block. There must be atleast one executable statement within a set of BEGIN and END

statements.

Error handling part

This part is called Exception. This part contains the error handling statements. Oracle takes

the control from the execution part to this part whenever any error is raised in the program

and checks for the exception.

Architecture of PL/SQL

PL/SQL runtime system is a technology, which has an engine that executes PL/SQL blocks

and subprograms. The engine can be installed in the Oracle server or in an application

development tool such as Forms and Reports. The engine can reside in either of the two

environments:

• Oracle server

• Oracle Tools

These two environments are independent. PL/SQL might be available in Oracle Server but

unavailable in tools or the other way around. The PL/SQL engine processes the procedural

statements and sends the SQL statements to the SQL Statement Executor in the Oracle Server.

The following figure illustrates this:

Figure 7.1 PL/SQL Engine

229

RDBMS Concepts and Oracle 8i

230

PL/SQL Engine In the Oracle Server

Application development tools that lack a local PL/SQL engine must rely on Oracle to

process PL/SQL blocks and subprograms. When it contains the PL/SQL engine, an Oracle

Server can process PL/SQL blocks and subprograms as well as single SQL statements. The

Oracle Server passes the blocks and subprograms to its local PL/SQL engine. Basically there

are 4 types of block:

• Anonymous Blocks

• Named Blocks

• Stored Subprograms

• Triggers

Anonymous Blocks

Anonymous PL/SQL blocks can be embedded in an Oracle Precompiler or OCI program. At

run time, the program, lacking a local PL/SQL engine, sends these blocks to the Oracle

Server, where they are compiled and executed. Likewise, interactive tools such as SQL*Plus

and Enterprise Manager, lacking a local PL/SQL engine, must send anonymous blocks to

Oracle.

Named Blocks

Named blocks act in the same way as anonymous blocks except that they can have names in

the form of labels, which are valid only for that program.

Stored Subprograms

Subprograms can be compiled separately and stored permanently in an Oracle database,

ready to be executed. A subprogram explicitly CREATEd using an Oracle tool is called a

stored subprogram. Once compiled and stored in the data dictionary, it is a schema object,

which can be referenced by any number of applications connected to that database.

RDBMS Concepts and Oracle 8i

231

Subprograms defined within another subprogram or within a PL/SQL block are called local

subprograms. They cannot be referenced by other applications and exist only for the

convenience of the enclosing block.

Stored subprograms offer higher productivity, better performance, memory savings,

application integrity, and tighter security. For example, by designing applications around a

library of stored procedures and functions, you can avoid redundant coding and increase

productivity.

Each stored subprogram has a name and is called or manipulated using the name in Oracle.

PL/SQL structure and the associated rules are the same when a subprogram is constructed

using them. Procedures and functions are known as subprograms. They can be called inside

triggers also.

Oracle has a concept by which all the related subprograms alongwith the variables and arrays

can be packaged for defining and deploying an application. These are called packages.

Database Triggers

A database trigger is a stored subprogram associated with a table. You can have Oracle

automatically fire the database trigger before or after an INSERT, UPDATE, or DELETE

statement affects the table. One of the many uses of database triggers is to audit data

modifications.

A database trigger has a typical PL/SQL structure and can call subprograms.

PL/SQL engine In Oracle Tools

When it contains the PL/SQL engine, an application development tool can process PL/SQL

blocks. The tool passes the blocks to its local PL/SQL engine. The engine executes all

procedural statements at the application site and sends only SQL statements to Oracle. Thus,

most of the work is done at the application site, not at the server site.

Furthermore, if the block contains no SQL statements, the engine executes the entire block at

the application site. This is useful if the application can benefit from conditional and iterative

control.

RDBMS Concepts and Oracle 8i

232

Frequently, Oracle Forms applications use SQL statements merely to test the value of field

entries or to do simple computations. By using PL/SQL instead, calls to the Oracle Server can

be avoided. Moreover, PL/SQL functions can be used to manipulate field entries.

PL/SQL Delimiters

Before writing a simple PL/SQL block first we need to know the basic delimiters.

Delimiter Name Description

; Statement

Terminator

Each statement terminates with a

Semicolon.

:= Assignment

Operator

Used to assign values to (A:=10)

variables.

 Label Indicator Used to define the labels inside a

block.

-- Single Line Commenting a single line Comment

/* .. */ Multiline

Comment

Many statements can be placed

 inside this and they will not

be executed.

.. Range indicator This is used in For Loops which

indicate the minimum range and

maximum range.

& Substitution

Variable

Used to substitute values to

variables.

 Bind or Session

Variable

accessed.

Global Variable can be

% Attribute

Indicator

They are used to assign the datatype

of a column to a variable.

 DBMS_OUTPU

T.PUT_LINE

used to print messages on the

Screen

RDBMS Concepts and Oracle 8i

233

Datatypes

Every constant and variable has a datatype that specifies a storage format and valid range of

values. Apart from the datatypes that are available in SQL, PL/SQL has its own set of

datatypes that can be used in PL/SQL blocks.

NUMBER Datatypes

Numeric Datatypes are used to store numeric data and represent quantities, calculations can

be performed on this datatype.

Binary_Integer

Binary_Integer datatype is used to store signed integers. Its magnitude ranges from –

2147483647…2147483647. They are used to store array type of data. This type requires less

storage compared to Number values.

Subtypes

A base type is the datatype from which a datatype is derived. A subtype associates a base

type with a constraint and so defines a subset of values. The following are the list of subtypes

available:

• NATURAL

• NATURALN

• POSITIVE

• POSITIVEN

• SIGNTYPE

Of these NATURAL and POSITIVE datatypes hold all positive numeric values. To prevent

NULLS from being entered, NATURALN and POSITIVEN are used. The SIGNTYPE restricts

an integer variables to the value 1,-1 or 0 depending on the type of the value entered.

Collection Datatypes

RDBMS Concepts and Oracle 8i

234

A collection is an ordered group of elements, all of the same type. Each element has a unique

subscript that determines the position of the collection. We shall see more about collections in

the later chapters.

Boolean Datatypes

Logical values TRUE, FALSE or NULL can be stored using the BOOLEAN datatype. The

datatype has no parameters.

Exception Datatype

This is a datatype that is used to define exception or error-handlers, which is defined by the

user. This is dealt in the chapter on Exceptions.

Writing a Simple Program

The following example is used to display a message called ‘WELCOME TO THE WORLD OF

PL/SQL’.

BEGIN

DBMS_OUTPUT.PUT_LINE(‘WELCOME TO THE WORLD OF PL/SQL’);

END;

Note that the program has no DECLARE part since the program does not use any variable

declaration. Declarative section is required only when variables are to be used like the

following example:

 Example 7.1

DECLARE

 x NUMBER;

BEGIN

 x:=56;

 DBMS_OUTPUT.PUT_LINE (x);

END;

RDBMS Concepts and Oracle 8i

235

The above example displays the value 56 which is stored in the variable x. In order to accept

the value at run-time the assignment operator has to be used.

Note: Although DBMS_OUTPUT.PUT_LINE is used to display messages, the messages will not be displayed unless

the environment setting called SET SERVEROUTPUT is turned on. This is a SQL Plus statement.

Example 7.2

DECLARE

 x NUMBER;

BEGIN

 x:=&numb;

 DBMS_OUTPUT.PUT_LINE (x);

END;

The assignment operator (&) is used to accept the value in the numb variable and this value

assigned to x. It is similar to the continuous insert statements dealt in chapter2.

Using the SELECT Statement inside PL/SQL

As discussed earlier, PL/SQL allows embedding of one or more SQL statements inside the

block. To display a condition based record, the select statement requires an ‘INTO’ clause. A

SELECT statement must hold an INTO clause where the output of the query is assigned to the

variable given in the INTO Clause. The following example illustrates this:

 Example 7.3

DECLARE

 s NUMBER;

BEGIN

 SELECT sal INTO s FROM emp WHERE empno=7369;

 DBMS_OUTPUT.PUT_LINE (‘the salary is ‘||s);

END;

The variable s is assigned the salary of the employee number 7369 and the result would be

displayed.

RDBMS Concepts and Oracle 8i

236

13.4 Declaring Variables

Variables can be declared in various ways. The two examples given above have shown how

to declare variables and assign values to them. Certain variables can carry default values,

which can be used to initialize values, and certain other variables can take constant values.

The following example illustrates the usage of the keywords DEFAULT and CONSTANT.

Using DEFAULT

DECLARE

 S NUMBER DEFAULT 10;

BEGIN

 DBMS_OUTPUT.PUT_LINE(s);

END

In this example, the default value of S i.e 10 is printed. The value in the variable s can be

altered. It can also be re-assigned with any other numerical value.

Using CONSTANT

Consider a situation where variables have to contain constant values; like for example pi has

to be assigned 3.14.

Example 7.4

DECLARE

 Pi CONSTANT REAL:=3.14;

 Area NUMBER;

 R NUMBER:=&R;

BEGIN

 Area:=pi*r**2;

DBMS_OUTPUT.PUT_LINE(‘THE AREA OF CIRCLE WITH RADIUS ‘||r||’ IS ‘||area);

END;

RDBMS Concepts and Oracle 8i

237

In the above example, the variable pi is declared as a constant variable whose value cannot

change anywhere inside the program. Re-assigning the value for the same variable leads to an

error.

Using NOT NULL

Besides assigning an initial value, declarations can impose the NOT NULL constraint, as the

following example shows:

Example 7.5

DECLARE

 s VARCHAR2(10) NOT NULL:=’RADIANT’;

BEGIN

 DBMS_OUTPUT.PUT_LINE(s);

END;

The difference between using NOT NULL and DEFAULT is that, default can be assigned to

NULL but NOT NULL as the name suggests cannot hold NULL values.

13.5 Control Structures

Often it is necessary to take alternative actions depending on circumstances. The IF statement

allows the execution of a sequence of statements conditionally. The execution purely depends

on the value of the condition specified. The working is similar to the IF conditions in other

programming languages. There are three forms of IF statements:

IF…THEN

IF..THEN..ELSE

IF..THEN..ELSEIF

IF-THEN

This is the simplest form of the IF statement. This associates a condition with a sequence of

statements enclosed by the keywords THEN and END IF. The following example illustrates

this:

RDBMS Concepts and Oracle 8i

238

Syntax

IF condition THEN

Sequence_of_statements;

End if;

The sequence of statements is executed only if the condition yields TRUE. If the condition

yields FALSE or NULL, the IF statement does nothing. In either case, control passes to the

next statement following END IF. An example follows

Example 7.6

DECLARE

 s number;

BEGIN

 S:=&a;

 If s>=10 THEN

 DBMS_OUTPUT.PUT_LINE(‘S greater than or equal to 10’);

END IF;

END;

The above example displays the value ‘S greater than or equal to 10’ only if the variable s

holds the value 10 or greater than that.

IF-THEN-ELSE

The second form of IF statement adds the keyword ELSE followed by an alternative sequence

of statements. The general syntax is as follows.

IF condition THEN

 Sequence_of_statements1;

ELSE

 Sequence_of_statements2;

END IF;

The sequence of statements in the ELSE clause is executed only if the condition yields FALSE

or NULL. Thus, the ELSE clause ensures that a sequence of statements is executed. Modifying

the above example.

Example 7.7

RDBMS Concepts and Oracle 8i

239

DECLARE

 S number;

BegiN

 S:=&a;

IF S>=10 THEN

DBMS_OUTPUT.PUT_LINE(‘S GREATER THAN OR EQUAL TO 10’);

Else

DBMS_OUTPUT.PUT_LINE(‘S IS LESSER THAN 10’);

END IF;

END;

IF-THEN-ELSIF

The third form of IF statement uses the keyword ELSIF (not ELSIF) to introduce additional

conditions. Multiple IF conditions are clubbed and written using the ELSIF clause.

Syntax:

IF CONDITION1 THEN

 SEQUENCE_OF_STATEMENTS1;

ELSIF CONDITION2 THEN

 SEQUENCE_OF_STATEMENTS2;

ELSE

SEQUENCE_OF_STATEMENTS3;

END IF;

If the first condition yields FALSE or NULL, the ELSIF clause tests another condition. An IF

statement can have any number of ELSIF clause; the final ELSE clause is optional. Conditions

are evaluated one by one from top to bottom. If any condition yields TRUE, its associated

sequence of statements is executed and control passes to the next statement following ENDIF.

If all the conditions yield FALSE or NULL, the sequence in the ELSE clause is executed. The

following example finds the greatest of two numbers using IF-THEN-ELSIF.

Example 7.8

DECLARE

RDBMS Concepts and Oracle 8i

240

A NUMBER:=&A;

B NUMBER:=&B;

BEGIN

IF A>B THEN

DBMS_OUTPUT.PUT_LINE(‘THE GREATEST NUMBER IS ‘||A);

ELSIF B> A THEN

DBMS_OUTPUT.PUT_LINE(‘THE GREATEST NUMBER IS ‘||B);

ELSE

DBMS_OUTPUT.PUT_LINE(‘BOTH ARE EQUAL’);

END IF;

END;

The above example accepts two numbers and the conditions are checked and depending on

the condition that evaluates to TRUE, the message under that condition is displayed.

When possible, use the ELSIF clause instead of nested IF statements. This will make the code

easier to read and understand. Compare the following IF statements.

IF condition1 THEN | IF condition1 THEN

 statement1; | statement1;

ELSE | ELSIF condition2 THEN

 IF condition2 THEN | statement2;

 statement2; | ELSIF condition3 THEN

 ELSE | statement3;

 IF condition3 THEN | END IF;

 statement3; |

 END IF; |

 END IF; |

END IF; |

These statements are logically equivalent. While the statement on the left obscures the flow of

logic, the statement on the right reveals it.

13. 6 Iterative Control

Iterative statements are a set of statements that are performed a number of times depending

on the value in the LOOP statement. There are three basic forms of LOOP statements

RDBMS Concepts and Oracle 8i

241

• LOOP

• WHILE LOOP

• FOR LOOP

LOOP

The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a

sequence of statements between the keywords LOOP and END LOOP. The syntax is as

follows.

Syntex

LOOP

Sequence_of_statements;

End LOOP.

With each Iteration of the loop, the sequence of statements is executed and the control

resumes at the top of the loop. The following example shows the execution of the LOOP

statement.

Example 7.9

DECLARE

a NUMBER:=10;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE(a);

END LOOP;

END;

The output leads to an error. Because the number of times the loop must be executed is not

specified and it goes for an infinite loop. In order to terminate the loop some form of

termination statement is required. The EXIT statement is used to perform this operation.

Example 7.10

RDBMS Concepts and Oracle 8i

242

DECLARE

A NUMBER:=&A;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE(A);

a:=a+1;

IF a > 20 THEN

EXIT;

End if;

END LOOP;

END;

Till the value crosses 20 the loop is executed and once the value for the variable reaches 20,

the loop is terminated using the EXIT statement. This EXIT statement can be further

simplified by the usage of EXIT_WHEN statement.

EXIT-WHEN

The EXIT-WHEN statement allows a loop to complete conditionally. When the EXIT when

statement is encountered, the condition in the WHEN clause is evaluated. If the condition

yields TRUE, the loop completes and control passes to the next statement after the loop. The

syntax follows.

BEGIN

 ….

EXIT WHEN <CONDITION>;

END;

The following example shows the usage of EXIT WHEN statement. This example is a

modification of the previous example with the EXIT statement.

Example 7.11

DECLARE

a NUMBER:=&a;

BEGIN

LOOP

DBMS_OUTPUT.PUT_LINE(a);

RDBMS Concepts and Oracle 8i

243

a:=a+1;

EXIT WHEN a>20;

END LOOP;

END;

While loop

The while loop statement associates a condition with a sequence of statements enclosed by

the keywords LOOP and END LOOP. The syntax of the WHILE LOOP.

Syntax

While condition loop

Sequence_of_statements;

END LOOP;

Before each iteration of the loop, the condition is evaluated. If the condition yields TRUE, the

sequence of statements is executed and the control resumes at the top of the loop. If the

condition yields FALSE or NULL, the loop is bypassed and control passes to the next

statement after end loop. The following example displays the total of the first 20 numbers

using the WHILE LOOP statement.

Example 7.12

DECLARE

X integer:=1;

Yinteger:=0;

BEGIN

WHILE x < = 20

LOOP

Y:=Y+x;

X:=X+1;

END LOOP;

DBMS_OUTPUT.PUT_LINE(Y);

END;

In above example, the loop is executed only when the while condition is satisfied.

RDBMS Concepts and Oracle 8i

244

FOR-LOOP

While the number of iterations for a WHILE loop is unknown until the loop completes, the

number of iterations for a FOR loop is known before the loop is entered. FOR loops iterate

over a specified range of integers. The range is part of an iteration scheme, which is enclosed

within the keywords FOR and LOOP. The syntax follows:

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP

 sequence_of_statements;

END LOOP;

The range is evaluated when the FOR loop is first entered and is never re-evaluated. As the

next example shows, the sequence of statements is executed once for each integer in the

range. After each iteration, the loop counter is incremented. The following example displays

the reversal of a string:

 Example 7.13

DECLARE

 S VARCHAR2(20):=’&s’;

 S1 VARCHAR2(20);

BEGIN

 FOR I IN 1..LENGTH(S)

 LOOP

 S1:=S1||SUBSTR(S,-I,1);

 END LOOP;

 DBMS_OUTPUT.PUT_LINE(s1);

END;

In the above example, a string is accepted. The number of iterations is fixed by the length of

the string. Each character in the string is extracted and assigned to the variable S1. The

variable is called a counter variable and it cannot be assigned or declared.

Example 7.14

DECLARE

RDBMS Concepts and Oracle 8i

245

 s VARCHAR2(20):=’&s’;

 s1 VARCHAR2(20);

BEGIN

 FOR i IN 1..LENGTH(s)

 LOOP

 s1:=s1||SUBSTR(s,-i,1);

 DBMS_OUTPUT.PUT_LINE(‘The counter value is ‘||i);

 END LOOP;

 DBMS_OUTPUT.PUT_LINE(s1);

END;

This displays the value of the counter variable.

By default iteration proceeds upward from the lower bound to the higher bound. However,

the keyword REVERSE is used, iteration proceeds downward from the higher bound to the

lower bound, as the example given below shows. After each iteration, the loop counter is

decremented.

FOR i IN 1..3 LOOP -- assign the values 1,2,3 to i

 sequence_of_statements; -- executes three times

END LOOP;

Nevertheless, the range bounds are to be written in ascending (not descending) order. Inside

a FOR loop, the loop counter can be referenced like a constant. So, the loop counter can

appear in expressions but it cannot be assigned values, as the following example shows:

FOR ctr IN 1..10 LOOP

 ...

 IF NOT finished THEN

 INSERT INTO ... VALUES (ctr, ...); -- legal

 factor := ctr * 2; -- legal

 ELSE

 ctr := 10; -- illegal

 END IF;

END LOOP;

Iteration schemes

The bounds of a loop range can be literals, variables or expressions; but they must evaluate to

integers. For example, the following iteration schemes are legal:

RDBMS Concepts and Oracle 8i

246

j IN -5..5

k IN REVERSE first..last

step IN 0..TRUNC(high/low) * 2

code IN ASCII('A')..ASCII('J')

LOOP LABELS

Like PL/SQL blocks, loops can be labeled. The label, an undeclared identifier enclosed by

double angle brackets, must appear at the beginning of the loop statement, as follows:

<<label_name>>

LOOP

Sequence_of_statements;

END LOOP;

Optionally, the label name can also appear at the end of the loop statement, as the following

example shows:

<<my_loop>>

LOOP

END LOOP my_loop;

When labeled loops are nested, ending label names can be used to improve readability. With

either form of EXIT statement, not only the current loop, but also any enclosing loops can be

completed. This can be done by labeling the enclosing loop that is to be completed. The label

can then be used in an EXIT statement, as follows

<<outer>>

LOOP

...

LOOP

..

Exit outer WHEN... exit both loops

End Loop;

...

End Loop outer;

RDBMS Concepts and Oracle 8i

247

Every enclosing loop up to and including the labeled loop is exited.

13. 7 Short Summary

PL/SQL stands for Procedural Language Extension for SQL. They implement the procedural

constructs that are available in other programming languages.

Basic unit of PL/SQL is a block.

Blocks are of different types:

• Anonymous Blocks

• Named Blocks

• Subprograms

• Triggers

PL/SQL contains three iterative control statements

• Loop

• While loop

• For loop

13.8 Brain Storm

1. PL/SQL is a_____________________

2. PL/SQL increases performance

a. True b. False

3. Boolean data type stores _________, _____________and___________

4. Which type attribute provides a record type that represents a row I na table

a . Varray type b. %rowtype c. %type

5. The advantages of subtypes are ________, _________and __________.

6. In which loop construct Reverse keyword is used

 a. While loop b. if…endif c. loop..until d. for loop

RDBMS Concepts and Oracle 8i

248

7. Consider a PL/SQL block
 Begin

 …………………………

 Goto ins_l

 ……………………….

 <<ins_7>>

 End;

 Will this block be executed successfully?

8. Null includes

a. Missing Values b. 0 c. Both missing values and 0

…

RDBMS Concepts and Oracle 8i

249

Lecture 14

Cursors

Objectives

After completing this lesson, you should be able to do the following

 Describe about Understanding Errors

 Describe types of Cursors

 Discuss about Cursor Variables

 Discuss about eg. For using constrained cursors

RDBMS Concepts and Oracle 8i

250

Coverage Plan

Lecture 14

14.1 Snap Shot

14.2 Understanding cursors

14.3 Types of cursors

14.4 Cursor variables

14.5 Using constrained & Unconstrained cursor variables

14.6 Short summary

14.7 Brain Storm

RDBMS Concepts and Oracle 8i

251

14.1 Snap Shot

This chapter deals with working of Cursors and different types of Cursors. This chapter also

gives an insight into the working of composite datatypes and their methods. This chapter also

introduces Cursor Variables and their usage.

• Cursors

• Implicit Cursors

• Explicit Cursors

• Cursor Attributes

• Constrained Cursors and Unconstrained Cursors

• Using Cursor For update

• Using Composite Datatypes

Oracle uses workareas to execute SQL statements and store processing results. A PL/SQL

construct called Cursor allows a workarea to be named, to store and access its information.

They are typically used in areas where the query inside the PL/SQL block retrieves more

than one record. A cursor is a pointer to handle the context area or the memory area or

workarea. The result set of information is called Result Set.

14.2 Understanding Cursors

Why Cursors?

When a query inside a PL/SQL block returns more than one record or one set of data, Oracle

requires a placeholder to place the values. The variables provided in the INTO clause can

contain only one value at a time. In order to process multiple records, CURSORS are used.

14.3 Types of Cursors

PL/SQL implicitly declares a cursor for all SQL data manipulation statements, including

queries that return only one row. Cursors can be of 2 types.

• Implicit Cursors

RDBMS Concepts and Oracle 8i

252

• Explicit Cursors

Implicit Cursors

Whenever a SQL statement is issued the Database server opens an area of memory in which

the command is parsed and executed. This area is called a cursor. When the executable part of

PL/SQL block issues a SQL command, PL/SQL creates an implicit cursor, which has the

identifier SQL. PL/SQL manages this cursor.

Explicit cursors

SELECT statements that occur within PL/SQL blocks are known as embedded. They must

return one row and may only return one row. To get around this a SELECT statement is

defined as a cursor (an area of memory), the query is executed and the returned rows are

manipulated within the cursor. Explicit Cursors can be of two types.

• Static Cursors

• Dynamic Cursors

Static Cursors

Static cursors are a type of cursors where the SELECT statement is given at compile time

itself. That is, the table from which the data are coming and the records that are going to be

selected are predetermined at compile time itself. The definition of the cursor is done in the

declarative part.

Dynamic Cursors

Dynamic Cursors as the name suggests, are a set of cursors where the records from the tables

are selected at run time rather than at compile time. Dynamic Cursors are dealt in the latter

part of this chapter.

Each cursor has four attributes

RDBMS Concepts and Oracle 8i

253

%ROWCOUNT Returns the number of rows processed

 by a SQL statement.

%FOUND Holds TRUE if at least one row is

 processed

%NOTFOUND Holds TRUE if no rows are processed.

%ISOPEN Holds TRUE if a cursor is open or

 FALSE if cursor has not been opened or has

been closed. They are used only

in connection with explicit cursors.

%ROWCOUNT

The %ROWCOUNT attribute is used to return the number of records fetched. This is in

accordance with the number of FETCHes done.

%FOUND

This attribute contains TRUE if the FETCH statement fetches any records. The attribute will

hold FALSE if there are no records to be fetched.

%NOTFOUND

It is the logical opposite of %FOUND. If records are fetched, the %NOTFOUND is FALSE and

TRUE if there are no more records to be processed. Using this we can terminate from the

loop.

%ISOPEN

This attribute checks for the status ofif the status of the cursor is open or not. If the cursor is

opened, it holds TRUE and FALSE if the cursor is not opened.

The tabular structure illustrates this better.

RDBMS Concepts and Oracle 8i

254

Attribute Is TRUE Is FALSE

%ISOPEN If the cursor is opened. If the cursor is not open.

%FOUND When records are fetched

using FETCH statement

If there are no more

records to be fetched

and processed

%NOTFOUND When there are no

records available to be

fetched

When records are

fetched by the FETCH

statement

%ROWCOUNT Holds the number of

records

-

Explicit Cursors

Explicit cursor manipulation is performed using four commands

• DECLARE

• OPEN

• FETCH

• CLOSE

Declaring a Cursor

Cursor declaration defines the name and structure of the cursor together with the SELECT

statement that will populate the cursor with data. The query is validated but not executed.

The keyword CURSOR is used to declare a cursor. The syntax to declare a cursor is:

Syntax:

CURSOR <cursorname> IS <query>

Example:

CURSOR C1 is SELECT ename,job FROM emp;

Opening a Cursor

RDBMS Concepts and Oracle 8i

255

After declaring the cursor, it needs to be opened for manipulation in the executable section.

Opening a cursor means that the query is executed and the rows are populated in the cursor.

Note that the declaration of the cursor does not mean that the query is executed and records

are selected. Only opening a cursor performs this operation.

Syntax:

OPEN <cursor name>

Example

OPEN c1;

Fetching Records from the cursor

FETCH statement loads the row addressed by the cursor pointer into variables and moves the

cursor pointer on to the next row ready for the next fetch. After each fetch, the cursor pointer

moves to the next row in the result set.

Syntax

FETCH <cursor name> INTO <variable list>

Example

FETCH C1 INTO x,y;

Here assume the variables x and y are already declared. For each column that is used in the

SELECT list a corresponding variable in the INTO list must appear. Otherwise it leads to an

error.

Closing a Cursor

CLOSE statement releases the data within the cursor and closes it. The cursor can be

reopened to refresh its data.

The following examples illustrate the concept of using Static cursors.

RDBMS Concepts and Oracle 8i

256

Example

This example is used to select all the employee names and their jobs from the table.

DECLARE

 CURSOR c1 IS SELECT ename,job FROM emp;

 Mname VARCHAR2(20);

 Mjob VARCHAR2(20);

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO mname,mjob;

 EXIT WHEN c1%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(mname||’ is a ‘ ||mjob);

 END LOOP;

 CLOSE c1;

END;

The output of the program is :

KING is a PRESIDENT

BLAKE is a MANAGER

CLARK is a MANAGER

JONES is a MANAGER

MARTIN is a SALESMAN

ALLEN is a SALESMAN

TURNER is a SALESMAN

JAMES is a CLERK

WARD is a SALESMAN

FORD is a ANALYST

SMITH is a CLERK

SCOTT is a ANALYST

ADAMS is a CLERK

MILLER is a CLERK

All the employee names and their respective jobs are displayed from the employee table.

Here, additionally there is a EXIT WHEN statement which was dealt in chapter 7. The output

differs depending on where the FETCH statement is placed. If the EXIT statement is placed

after the DBMS_OUTPUT.PUT_LINE statement, the last record is displayed twice since the

variables contain the last fetched record. Consider the following example is:

RDBMS Concepts and Oracle 8i

257

DECLARE

 CURSOR c1 IS SELECT ename,job FROM emp;

 Mname VARCHAR2(20);

 Mjob VARCHAR2(20);

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO mname,mjob;

 DBMS_OUTPUT.PUT_LINE(mname||' is a ' ||mjob);

 EXIT WHEN c1%NOTFOUND;

 END LOOP;

 CLOSE c1;

END;

The output will look like:

KING is a PRESIDENT

BLAKE is a MANAGER

CLARK is a MANAGER

JONES is a MANAGER

MARTIN is a SALESMAN

ALLEN is a SALESMAN

TURNER is a SALESMAN

JAMES is a CLERK

WARD is a SALESMAN

FORD is a ANALYST

SMITH is a CLERK

SCOTT is a ANALYST

ADAMS is a CLERK

MILLER is a CLERK

MILLER is a CLERK

Example

This example SELECTS records from the table based on the department number.

DECLARE

CURSOR c1 IS SELECT ename,job,deptno FROM emp where deptno=10;

Mname VARCHAR2(20);

Mjob VARCHAR2(20);

mdno number;

BEGIN

OPEN c1;

LOOP

 FETCH c1 INTO mname,mjob,mdno;

 EXIT WHEN c1%NOTFOUND;

RDBMS Concepts and Oracle 8i

258

 DBMS_OUTPUT.PUT_LINE(mname||' is a ' ||mjob||' working in '||mdno);

 END LOOP;

 CLOSE c1;

END;

The output of the program will be:

KING is a PRESIDENT working in 10

CLARK is a MANAGER working in 10

MILLER is a CLERK working in 10

Using CURSOR FOR Loops

A FOR CURSOR opens the cursor, fetches the records and closes the cursors. In the case of

FOR CURSOR loops, declaration alone must be given. Changing the above example to a FOR

CURSOR loop, the programming code is reduced.

Example

DECLARE

 CURSOR c1 IS SELECT ename,job,deptno FROM emp where deptno=10;

 Mname VARCHAR2(20);

 Mjob VARCHAR2(20);

mdno number;

BEGIN

FOR EREC IN C1

 LOOP

 DBMS_OUTPUT.PUT_LINE(EREC.Ename||' is a ' ||EREC.job||' working in

'||EREC.DEPTNo);

 END LOOP;

END;

The output will be the same. In the above example, there is no explicit OPEN, FETCH and

CLOSE statements since FOR automatically takes care of.

Using %TYPE

RDBMS Concepts and Oracle 8i

259

The %TYPE attribute provides the datatype of a variable or database column. Supposing a

variable has to be defined to be of the same datatype as a column in a table, then this attribute

is used. This defines the exact datatype. The syntax is :

Variablename <tablename>.<columnname>%TYPE

Example

Refining example,

DECLARE

 CURSOR c1 IS SELECT ename,job,deptno FROM emp where deptno=10;

 Mname emp.ename%type;

 Mjob emp.job%type;

mdno emp.deptno%type;

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO mname,mjob,mdno;

 EXIT WHEN c1%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(mname||' is a ' ||mjob||' working in '||mdno);

 END LOOP;

 CLOSE c1;

END;

There is no change in the output.

Using %ROWTYPE

The %ROWTYPE attribute provides a record type that represents a row in a table. The

variable declared as this type can store an entire row of data selected from the table or fetched

from a cursor. This type is used in cases where all the column names need to be retrieved

from the table.

Example

This query displays all the records from the table.

DECLARE

RDBMS Concepts and Oracle 8i

260

 CURSOR c1 IS SELECT * from emp;

e_rec emp%rowtype;

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO e_rec;

 EXIT WHEN c1%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(e_rec.ename||' is a ' ||e_rec.job||' and earns

'||e_rec.sal);

 END LOOP;

 CLOSE c1;

END;

The output of the program will be:

KING is a PRESIDENT and earns 5000

BLAKE is a MANAGER and earns 2850

CLARK is a MANAGER and earns 2450

JONES is a MANAGER and earns 2975

MARTIN is a SALESMAN and earns 1250

ALLEN is a SALESMAN and earns 1600

TURNER is a SALESMAN and earns 1500

JAMES is a CLERK and earns 950

WARD is a SALESMAN and earns 1250

FORD is a ANALYST and earns 3000

SMITH is a CLERK and earns 800

SCOTT is a ANALYST and earns 3000

ADAMS is a CLERK and earns 1100

MILLER is a CLERK and earns 1300

The queries that appear in the Cursor declaration can be a JOIN or a SUB-QUERY.

Understanding COMPOSITE DATATYPES

Composite Datatypes are a set of datatypes that can hold multiple columns and multiple

records. Records and Tables together are called as Composite Datatypes.

A PL/SQL record is a variable that contains a collection of separate fields. Each field is

individually addressable. Referencing the field names can be done in both assignments and

RDBMS Concepts and Oracle 8i

261

expressions. The fields within a record may have different datatypes and sizes, like the

columns of a database table. Records are a convenient way of storing a complete fetched row

from a database table. Using %ROWTYPE attribute to declare a record based upon a

collection of database columns from a table or view, the fields within the record take their

names and datatypes from the columns of the table or view.

Using Record Type

Record type variables are declared using the keyword RECORD. The following example

shows this:

Example

DECLARE

TYPE TREC IS RECORD(A VARCHAR2(20),B NUMBER);

TVAR TREC;

CURSOR C1 IS SELECT PNAME,PCODE FROM PRODUCT;

BEGIN

OPEN C1;

LOOP

FETCH C1 INTO TVAR;

EXIT WHEN C1%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(TVAR.A||' '||TVAR.B);

END LOOP;

CLOSE C1;

END;

The Output will look like:

navtal lock 101

storewell 102

cinthol old 103

1.5 ton a/c 104

1.0 ton a/c 105

0.75 ton a/c 106

puf refrigerator 107

hair dye 108

shaving cream 109

jumpin juke 110

thomas cook 111

RDBMS Concepts and Oracle 8i

262

Using Table Type

Tabletype is a collection datatype that stores the table values and it can be accessed. It consists

of various collection methods.

Syntax:

Type <typename> is Table of <datatype> index by binary_integer;

Here typename indicates the name of the type and the datatype is the type it can hold and

index by binary_integer specifies that it can hold a dynamic range of values.

Example

DECLARE

TYPE VTAB IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;

TAB VTAB;

J BINARY_INTEGER:=0;

CURSOR C1 IS SELECT ENAME FROM EMP;

BEGIN

FOR I IN C1 LOOP

J:=J+1;

TAB(J):=I.ENAME;

DBMS_OUTPUT.PUT_LINE(TAB(J));

END LOOP;

END;

In this example, vtab is declared as a table type. Since it can hold any number of data the

index must be specified. This displays all the records. In order to display specific values,

collection methods are used.

Using Collection Methods

There are certain methods that can be used along with the table type. Following are the list of

collection methods:

• COUNT

RDBMS Concepts and Oracle 8i

263

• EXISTS

• FIRST

• LAST

• PRIOR

• NEXT

• DELETE

Using COUNT

Count returns the number of elements that the collection contains. For example, if there are 10

elements the count will display 10.

Using FIRST and LAST

As the names indicate, FIRST and LAST are used to return the first and the last index number

in the collection.

PRIOR and NEXT

PRIOR(n) indicates the number that precedes the index n in the collection. NEXT is used to

traverse to the next element .

Using DELETE

DELETE is used to delete the specified element from the collection. Note that this does not

delete data from the table. Delete without parameter deletes all the elements and delete with

a number deletes the specified element alone.

Using Exists

In a collection, if a user would like to know the existence of an element, this can be done

using the collection method Exists which takes in a value and checks for its existence.

An example using the collection types follows:

RDBMS Concepts and Oracle 8i

264

DECLARE

TYPE VTAB IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;

TAB VTAB;

J BINARY_INTEGER:=0;

CURSOR C1 IS SELECT ENAME FROM EMP;

BEGIN

FOR I IN C1 LOOP

J:=J+1;

TAB(J):=I.ENAME;

END LOOP;

DBMS_OUTPUT.PUT_LINE(TAB.FIRST);

END;

Note, in the above example, it displays the index number 1 and not the value. In order to

display the value, the statement must be re-written as

 Dbms_output.put_line(tab(tab.first));

The following exaple displays other values,

DECLARE

TYPE VTAB IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;

TAB VTAB;

J BINARY_INTEGER:=0;

CURSOR C1 IS SELECT ENAME FROM EMP;

BEGIN

FOR I IN C1 LOOP

J:=J+1;

TAB(J):=I.ENAME;

END LOOP;

DBMS_OUTPUT.PUT_LINE('THE TOTAL NUMBER OF RECORDS ARE '||TAB.COUNT);

DBMS_OUTPUT.PUT_LINE('THE FIRST RECORD IS '||TAB(TAB.FIRST));

DBMS_OUTPUT.PUT_LINE('THE LAST RECORD IS '||TAB(TAB.LAST));

DBMS_OUTPUT.PUT_LINE('THE SECOND RECORD IS '||TAB(TAB.NEXT(TAB.FIRST)));

DBMS_OUTPUT.PUT_LINE('THE LAST BUT PREVIOUS RECORD IS

'||TAB(TAB.PRIOR(TAB.LAST)));

END;

The displays would be as follows

The total number of records are 14

RDBMS Concepts and Oracle 8i

265

The first record is KING

The last record is MILLER

The second record is BLAKE

The last but previous record is ADAMS

Here KING is the first record. If the record is deleted, then the second record will be

displayed as the first record.

DECLARE

TYPE VTAB IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;

TAB VTAB;

J BINARY_INTEGER:=0;

CURSOR C1 IS SELECT ENAME FROM EMP;

BEGIN

FOR I IN C1 LOOP

J:=J+1;

TAB(J):=I.ENAME;

END LOOP;

DBMS_OUTPUT.PUT_LINE('THE TOTAL NUMBER OF RECORDS ARE '||TAB.COUNT);

DBMS_OUTPUT.PUT_LINE('THE FIRST RECORD IS '||TAB(TAB.FIRST));

DBMS_OUTPUT.PUT_LINE('THE LAST RECORD IS '||TAB(TAB.LAST));

DBMS_OUTPUT.PUT_LINE('THE SECOND RECORD IS '||TAB(TAB.NEXT(TAB.FIRST)));

DBMS_OUTPUT.PUT_LINE('THE LAST BUT PREVIOUS RECORD IS

'||TAB(TAB.PRIOR(TAB.LAST)));

 TAB.DELETE(1);

DBMS_OUTPUT.PUT_LINE('THE TOTAL NUMBER OF RECORDS ARE '||TAB.COUNT);

DBMS_OUTPUT.PUT_LINE('THE FIRST RECORD IS '||TAB(TAB.FIRST));

DBMS_OUTPUT.PUT_LINE('THE LAST RECORD IS '||TAB(TAB.LAST));

DBMS_OUTPUT.PUT_LINE('THE SECOND RECORD IS '||TAB(TAB.NEXT(TAB.FIRST)));

DBMS_OUTPUT.PUT_LINE('THE LAST BUT PREVIOUS RECORD IS

'||TAB(TAB.PRIOR(TAB.LAST)));

END;

The display would now be,

The total number of record are 14

The first record is KING

The last record is MILLER

The second record is BLAKE

The last but previous record is ADAMS

The total number of records are 13

The first record is BLAKE

The last record is MILLER

RDBMS Concepts and Oracle 8i

266

The second record is CLARK

The last but previous record is ADAMS

CURSOR FOR UPDATE

Very often, the processing done in a fetch loop modifies the rows that have been retrieved by

the cursor.PL/SQL provides a convenient syntax for doing this. This method consists of two

parts :

• The FOR UPDATE clause in the cursor declaration

• The WHERE CURRENT OF clause in an UPDATE or DELETE statement.

FOR UPDATE

The FOR UPDATE clause identifies the rows that will be updated or deleted, and then locks

the rows in the result set.

The syntax is

 SELECT...FROM...FOR UPDATE [OF column_reference] [NOWAIT]

Where column_reference is a column in the table against which the query is performed. A list

of columns can also be used.

Normally SELECT operation will not take any locks on the rows being accessed. This allows

other sessions connected to the database to change the data being selected. The result set is

still consistent. When the cursor is opened, the active set is determined. Any changes that

have been committed prior to this point are reflected in the active set. Any changes made

after this point, even if they are committed, are not reflected unless the cursor is reopened,

which will evaluate the active set again. This is the called as read-consistency. However, in

the case of FOR UPDATE clause, exclusive row locks are taken on the rows in the active set

before the OPEN returns. These locks prevent other sessions from changing the rows in the

active set until the transaction is committed.

If another session already has locks on the rows in the active set, then the SELECT FOR

UPDATE operation will wait for this waiting period- the SELECT FOR UPDATE will hang

RDBMS Concepts and Oracle 8i

267

until the other session releases the lock. To handle this situation, the NOWAIT clause can be

used. If the rows are locked by another session, then OPEN will return immediately with the

Oracle error:

 ORA-54:resource busy and acquire with NOWAIT specified

Where Current of

If the cursor is declared with the FOR UPDATE clause, the WHERE CURRENT OF clause can

be used in an UPDATE or DELETE statement. This statement refers to the latest row fetched

from the cursor. The syntax for this clause is

WHERE CURRENT OF cursorname

where cursorname is the name of a cursor that has been declared with a FOR UPDATE clause.

The WHERE CURRENT OF clause evaluates to the row that is just retrieved by the cursor.

Note that the UPDATE statement updates only the column listed in the FOR UPDATE clause

of the cursor declaration. If no columns are listed, then any column can be updated.

It is legal to execute a query with a FOR UPDATE clause, but not reference the rows fetched

via WHERE CURRENT OF. In this case, the rows are still locked and thus can only be

modified by the current session (which holds the lock).UPDATE and DELETE statements that

modify these rows will not block if they are executed by the session holding the lock. The

following example is illustrative of this:

DECLARE

CURSOR c1 IS SELECT * FROM emp FOR UPDATE;

CURSOR c2 IS SELECT * FROM emp;

BEGIN

FOR emp_rec IN c1

LOOP

IF emp_rec.job='MANAGER' THEN

UPDATE emp SET sal=sal+500 WHERE CURRENT OF c1;

ELSIF emp_rec.job='CLERK' THEN

UPDATE emp SET sal=sal+200 WHERE CURRENT OF c1;

END IF;

END LOOP;

FOR erec IN c2

RDBMS Concepts and Oracle 8i

268

LOOP

 DBMS_OUTPUT.PUT_LINE(erec.ename ||’ now earns ‘||erec.sal);

 END LOOP;

END;

In the above-mentioned example the program first checks whether the job of the employee is

MANAGER or CLERK.

If the condition evaluates to TRUE the cursor updates that particular record's salary as given

in the program. This is achieved by using WHERE CURRENT of clause. Otherwise the salary

will be updated as mentioned for the whole table if the fetch results in TRUE condition. The

output of the above program will be:

KING now earns 5000

BLAKE now earns 3350

CLARK now earns 2950

JONES now earns 3475

MARTIN now earns 1250

ALLEN now earns 1600

TURNER now earns 1500

JAMES now earns 1150

WARD now earns 1250

FORD now earns 3000

SMITH now earns 1000

SCOTT now earns 3000

ADAMS now earns 1300

MILLER now earns 1500

14.4 Cursor Variables

All of the explicit cursor examples we have seen so far are examples of static cursors. The

cursor is associated with one SQL statement and this statement is determined when the

compilation of PL/SQL takes place.

A cursor variable, on the other hand, can be associated with different statements at run time.

Cursor variables are analogous to PL/SQL variables, which can hold different values at run

time. Static cursors are analogous to PL/SQL constants, since they can only be associated

with one run-time query.

RDBMS Concepts and Oracle 8i

269

In order to use a cursor variable, it must first be declared. Storage for it must then be allocated

at run time, since a cursor variable is a REF type. This means that, it is a reference type to a

cursor. From this point opening, fetching of records and closing are similar to those of Static

Cursors.

Declaring a Cursor Variable

Reference types in PL/SQL are declared using the syntax:

 REF type

where type is a previously defined type.

The REF keyword indicates that the new type will be a pointer to the defined type. The type

of a cursor variable is therefore REF CURSOR. . The complete syntax for defining a cursor

variable type is

TYPE type_name IS REF CURSOR RETURN return_type;

where type_name is the name of the new reference type, and return_type is a record type

indicating the types of the select list that will eventually be returned by the cursor variable.

The return type for a cursor variable must be a record type. It can be declared explicitly as a

user-defined record or implicitly using %ROWTYPE.

Once the reference type is defined, the variable can be declared. The following declarative

section shows different declarations for cursor variables.

DECLARE

 TYPE emp_ref IS REF CURSOR RETURN emp%ROWTYPE;

TYPE t_emprecord IS RECORD (name emp.ename%type, desg emp.job%TYPE);

v_emprecord t_emprecord;

 TYPE t_emprecordRef IS REF CURSOR RETURN t_empRecord;

TYPE t_empRef2 IS REF CURSOR RETURN v_emprecord%TYPE;

 v_emprecordCV t_emprecord;

 v_emprecord t_emprecordRef;

14.5 Using Constrained and Unconstrained Cursor Variables

The cursor variables in the previous section are constrained-they are declared for a specific

return type only. When the variable is later opened, it must be opened for a query whose

RDBMS Concepts and Oracle 8i

270

select list matches the return type of the cursor. If not, the predefined exception

ROWTYPE_MISMATCH is raised.

PL/SQL, however, allows the declaration of unconstrained cursor variables. An

unconstrained cursor variable does not have a RETURN clause. When an unconstrained

cursor variable is later opened, it can be opened for any query. The following declarative

section declares an unconstrained cursor variable.

DECLARE

--TYPE t_FlexibleRef IS REF CURSOR;

v_CursorVar t_FlexibleRef;

Allocating Storage for Cursor Variables

Since a cursor variable is a reference type, no storage is allocated for it when it is declared.

Before it can be used, it needs to point to a valid area of memory. This memory can be created

automatically by the PL/SQL engine.

Controlling Cursor Variables

There are three statements that control a cursor variable: OPEN-FOR, FETCH and CLOSE.

OPEN-FOR is used for a multi-row query. FETCH is used to retreive rows from the result set

one at a time. After all the rows are processed ,CLOSE closes the cursor variable and releases

the memory.

Opening a Cursor Variable for a Query

In order to associate a cursor variable with a particular SELECT statement, the OPEN syntax

is extended to allow the query to be specified. This is done with the OPEN FOR syntax.

OPEN cursor_variable FOR select_statement;

where cursor_variable is a previously declared cursor variable, and select_statement is the

desired query.

RDBMS Concepts and Oracle 8i

271

Note that if the cursor variable is constrained, then the select list must match the return type

of the cursor. If it is not constrained, the error

ORA-6504: PL/SQL: return types of result set variables or query do not match

 For example,given a cursor variable declaration like this,

DECLARE

 TYPE T_PRODREF IS REF CURSOR RETURN PRODUCT%ROWTYPE;

 V_PRODUCT T_PRODREF;

V_PRODUCTTAB PRODUCT%ROWTYPE;

--WE CAN OPEN V_PRODUCT WITH:

BEGIN

OPEN V_PRODUCT FOR SELECT * FROM PRODUCT;

LOOP

FETCH V_PRODUCT INTO V_PRODUCTTAB;

EXIT WHEN V_PRODUCT%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(V_PRODUCTTAB.PNAME||' '||V_PRODUCTTAB.PCODE||'

'||V_PRODUCTTAB.DEPTNO);

END LOOP;

CLOSE V_PRODUCT;

END;

The output of the program will be:

navtal lock 101 40

storewell 102 40

cinthol old 103 10

1.5 ton a/c 104 20

1.0 ton a/c 105 20

0.75 ton a/c 106 20

puf refrigerator 107 20

hair dye 108 10

shaving cream 109 10

jumpin juke 110 10

thomas cook 111 30

If,on the other hand,we attempt to open v_productCV the following way,

OPEN v_productCV FOR SELECT deptno,pname,pcode FROM product;

RDBMS Concepts and Oracle 8i

272

Raises ORA-6504,since the select list of the query does not match the return type of the cursor

variable.

Closing Cursor Variables

Cursor variables are closed just like static cursors using the CLOSE statement. This frees the

resources used for the query. It does not necessarily free the storage for the cursor variable

itself.The storage for the variable is freed when the variable goes out of scope. It is illegal to

close a cursor or cursor variable that is already closed. Cursor variables can be closed on

either the client or the server. In the preceding program, the Cursor is opened on the server

(via the embedded anonymous block), and fetched from and closed back on the client. Since

the cursor variable is declared as a host variable, it is unconstrained.

Example for using Constrained Cursors

Consider a query that displays records from multiple tables.

If Emp table is selected, it displays empno,ename and if Dept table is selected, it must

display deptno,dname and if product is selected, it displays pcode and pname. In the above,

records come from different tables but the type of data that is retrieved is of the same

structure.

DECLARE

 TYPE rectab IS RECORD (code NUMBER, name VARCHAR2(40));

 TYPE refcur IS REF CURSOR RETURN rectab;

 Recvar RECTAB;

 Refcur_var refcur;

 Opt NUMBER:=&N;

BEGIN

 IF opt=1 THEN

 OPEN refcur_var FOR SELECT empno,ename FROM emp;

 ELSIF opt=2 THEN

 OPEN refcur_var FOR SELECT deptno,dname FROM dept;

 ELSIF opt=3 THEN

 OPEN refcur_var FOR SELECT pcode,pname FROM product;

 ELSE

DBMS_OUTPUT.PUT_LINE (‘INVALID OPTION SELECTED’);

 END IF;

 LOOP

 FETCH refcur_var INTO recvar;

RDBMS Concepts and Oracle 8i

273

 EXIT WHEN refcur_var%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(‘Code is ‘||recvar.code ||’ Name is

‘||recvar.name);

 END LOOP;

 CLOSE refcur_var;

END;

When this block gets executed and if the option entered is 1, it displays,
Enter value for n: 1

old 6: Opt NUMBER:=&N;

new 6: Opt NUMBER:=1;

Code is 7839 Name is KING

Code is 7698 Name is BLAKE

Code is 7782 Name is CLARK

Code is 7566 Name is JONES

Code is 7654 Name is MARTIN

Code is 7499 Name is ALLEN

Code is 7844 Name is TURNER

Code is 7900 Name is JAMES

Code is 7521 Name is WARD

Code is 7902 Name is FORD

Code is 7369 Name is SMITH

Code is 7788 Name is SCOTT

Code is 7876 Name is ADAMS

Code is 7934 Name is MILLER

Likewise for 2 and 3 options, the corresponding values are selected.

But if the option is not a valid one, it displays

INVALID OPTION SELECTED

DECLARE

*

ERROR at line 1:

ORA-01001: invalid cursor

ORA-06512: at line 18

In order to capture this Exceptions are used.

Example for Un-Constrained Variables

RDBMS Concepts and Oracle 8i

274

DECLARE

TYPE TCUR IS REF CURSOR;

TVAR TCUR;

 EREC EMP%ROWTYPE;

 DREC DEPT%ROWTYPE;

 CHOICE NUMBER:=&C;

BEGIN

IF CHOICE=1 THEN

 OPEN TVAR FOR SELECT * FROM EMP;

LOOP

 FETCH TVAR INTO EREC;

 EXIT WHEN TVAR%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(erec.ename);

END LOOP;

CLOSE TVAR;

ELSIF CHOICE=2 THEN

 OPEN TVAR FOR SELECT * FROM DEPT;

LOOP

 FETCH TVAR INTO DREC;

EXIT WHEN TVAR%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(drec.deptno||’ ‘||drec.dname);

END LOOP;

CLOSE TVAR;

ELSE

 DBMS_OUTPUT.PUT_LINE(‘INVALID CHOICE’);

END IF;

The display of the program based on the condition will be:

Enter value for c: 2

old 6: CHOICE NUMBER:=&C;

new 6: CHOICE NUMBER:=2;

10 ACCOUNTING

20 RESEARCH

30 SALES

 OPERATIONS

14.6 Short Summary

 Cursors are named workareas that are used for multiple row processing in PL/SQL

blocks.

RDBMS Concepts and Oracle 8i

275

 They can be of two types:

• Implicit Cursors and Explicit Cursors

• The four Cursor attributes which check the status of a cursor are %FOUND,

%NOTFOUND, %ROWCOUNT and %ISOPEN.

 Composite Datatypes are the datatypes that can hold multiple columns and multiple

records.

 Dynamic cursors can accept the table name at run-time. They can be further classified as

Constrained and Un-constrained Cursors. Cursor variables can be associated with

different statements at run time.

14.7 Brain Storm

1. Cursor is_____________________

2. The two types of cursors are_______________&________________

3. What are the statements used to control the cursor

a. open b. fetch c. close d. declare

4. What is a Cursor variable?

5. _________and___________are the two types of REF cursor type

6. If the last fetch returned a row, % not found returns_____________

7. The value of % row count before the first fetch is___________

8. SQL %isopen always yields__________

9. Locks can be released by

a. Commit b. Savepoint c. Rollback

RDBMS Concepts and Oracle8i

276

Lecture 15

Exceptions

Objectives

After completing this lesson, you should be able to do the following

 Define PL/SQL exceptions

 Recognize unhandled exceptions

 List and use different types of PL/SQL exception handlers

 Trap unanticipated errors

 Describe the effect of exception propagation in nested blocks

 Customize PL/SQL exception messages

RDBMS Concepts and Oracle8i

277

Coverage Plan

Lecture 15

15.1 Snap shot

15.2 Exceptions

15.3 Errors

15.4 User – defined exceptions

15.5 Unhandled exceptions

15.6 Short summary

15.7 Brain Storm

RDBMS Concepts and Oracle8i

15.1 Snap Shot

This chapter deals with handling run-time errors that are raised due to various reasons and to

give an understandable user-friendly message. Creating and displaying user-defined error

messages are also dealt with.

• Introduction to Exception

• Predefined exception

• List of Predefined exceptions

• Handling user-defined exceptions

• Using Raise_application_error

• Usage of SQLCODE and SQLERRM

15.2 Exceptions

An exception is an identifier in PL/SQL, raised during the execution of a block that

terminates its main body of actions. A block always terminates when PL/SQL raises an

exception, but you specify an exception handler to perform final actions.

 Two methods for raising an exception

1. An oracle error occurs and the associated exception is raised automatically. For example,

if the error ORA-04103 occurs when no rows are retrieved from the database in a select

statement, then PL/SQL raises the exception NO_DATA_FOUND.

2. You raise an exception explicitly by issuing the RAISE statement within the block. The

exception being raised may be either user defined or predefined.

 Handling exceptions

 Trap the exception Propagate the exception

278

 Exception is Exception

 Raised is raised

 Exception is Exception is

 Trapped not trapped

 DECLARE

 BEGIN

 DECLARE

 BEGIN

X ION

 D;

 EX ION

 END;

 ECEPT CEPT

EN

Exception Propagates to calling environment

RDBMS Concepts and Oracle8i

279

15.3 Errors

Runtime errors arise from design faults, mistakes, hardware failures and many other sources.

Although these errors are not anticipated, these errors can be handled meaningfully. To

capture the errors raised, Exceptions are used. In PL/SQL, warnings or error condition is

called Exception. When an error occurs, an exception is raised. That is normal execution is

stopped and control is transferred to the exception-handling part of the PL/SQL block. They

are designed for run-time rather than compile time errors. They are handled in the Exception

section of the PL/SQL block. Errors can be classified as

• Runtime Errors

• Compile-time Errors

Exceptions can be broadly classified into:

• Predefined Exceptions

• User-defined Exceptions

• Un-defined Exceptions

 Pre-defined Exceptions

Predefined exceptions are exceptions that are already defined by Oracle. The following list

gives the set of Predefined Exceptions.

 Advantages of Exceptions

Using exceptions for error handling has several advantages. Without exception handling,

every time a command is issued, execution errors must be checked, as follows:

BEGIN

 SELECT ...

 -- check for 'no data found' error

 SELECT ...

 -- check for 'no data found' error

 SELECT ...

 -- check for 'no data found' error

RDBMS Concepts and Oracle8i

280

Error processing is not clearly separated from normal processing; nor is it robust. If you

neglect to code a check, the error goes undetected and is likely to cause other, seemingly

unrelated errors.

With exceptions, errors can be conveniently handled without the need to code multiple

checks, as follows:

BEGIN

 SELECT ...

 SELECT ...

 SELECT ...

 ...

 Exception

WHEN NO_DATA_FOUND THEN -- catches all 'no data found' errors

Exceptions improve readability by letting error-handling routines to be isolated. Error

recovery algorithms do not obscure the primary algorithm. Exceptions also improve

reliability. You need not worry about checking for an error at every point it might occur. Just

add an exception handler to your PL/SQL block. If the exception is ever raised in that block

(or any sub-block), you can be sure it will be handled.

NO_DATA_FOUND

A SELECT INTO statement returns no rows, or a deleted element is

referenced in a nested table, or an uninitialized element is referenced

in an index-by table. The FETCH statement is expected to return no

rows eventually, so when that happens, no exception is raised. SQL

group functions such as AVG and SUM always return a value or a

null. So, a SELECT INTO statement that calls a group function will

never raise NO_DATA_FOUND.

NOT_LOGGED_ON
PL/SQL program issues a database call without being connected to

Oracle.

PROGRAM_ERROR PL/SQL has an internal problem.

ROWTYPE_MISMAT

CH

The host cursor variable and PL/SQL cursor variable involved in an

assignment have incompatible return types. For example, when you

pass an open host cursor variable to a stored subprogram, the return

types of the actual and formal parameters must be compatible.

RDBMS Concepts and Oracle8i

281

STORAGE_ERROR PL/SQL runs out of memory or memory is corrupted.

SUBSCRIPT_BEYON

D_COUNT

A nested table or varray element is referenced using an index number

larger than the number of elements in the collection.

SUBSCRIPT_OUTSID

E_LIMIT

you reference a nested table or varray element using an index number

that is outside the legal range (-1 for example).

TIMEOUT_ON_RES

OURCE

A timeout occurs while Oracle is waiting for a resource.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR

An arithmetic conversion, truncation, or size-constraint error occurs.

For example, when a column value is selected into a character

variable, if the value is longer than the declared length of the variable,

PL/SQL aborts the assignment and raises VALUE_ERROR. In

procedural statements, VALUE_ERROR is raised if the conversion of

a character string to a number fails. In SQL statements,

INVALID_NUMBER is raised.

ZERO_DIVIDE User tries to divide a number by zero.

The following examples illustrates the usage of Pre-defined exceptions

 Zero-Divide

When a number is divided by zero, this exception is raised. The following example briefs this

exception.

Example

DECLARE

X NUMBER:=&X;

Y NUMBER:=&Y;

BEGIN

DBMS_OUTPUT.PUT_LINE(‘RESULT IS ‘||X/Y);

END;

In this example, two values are accepted for x and y respectively. If both contains non-zero

values the result is printed. If ‘y’ contains zero, it leads to the exception which is displayed as:

ORA-01476: divisor is equal to zero

RDBMS Concepts and Oracle8i

282

In order to handle the exception, exception clause must contain the Exception Zero_Divide.

Refining the above example,

DECLARE

X NUMBER:=&X;

Y NUMBER:=&Y;

BEGIN

DBMS_OUTPUT.PUT_LINE('RESULT IS '||X/Y);

EXCEPTION

WHEN ZERO_DIVIDE THEN

DBMS_OUTPUT.PUT_LINE('VALUE IS DIVIDED BY ZERO');

END;

The second example illustrates the usage of NO_DATA_FOUND

Example

DECLARE

MYENAME VARCHAR2(20);

BEGIN

SELECT ENAME INTO MYENAME FROM EMP WHERE EMPNO=&X;

DBMS_OUTPUT.PUT_LINE('THE NAME OF THE EMPLOYEE IS '||MYENAME);

EXCEPTION

WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('NO RECORD FOUND');

END;

/

A SELECT statement returns not more than one row. If a SELECT statement is made to return

more than one record, a cursor is required. The following example shows this.

Example
DECLARE

 MYSAL NUMBER;

BEGIN

SELECT SAL INTO MYSAL FROM EMP WHERE DEPTNO=10;

DBMS_OUTPUT.PUT_LINE(MYSAL);

END;

This would display

RDBMS Concepts and Oracle8i

283

ORA-01422: exact fetch returns more than requested number of rows

Raises the pre-defined exception too_many_rows. To avoid this, handle the exception in the

Exception clause.

DECLARE

 MYSAL NUMBER;

BEGIN

SELECT SAL INTO MYSAL FROM EMP WHERE DEPTNO=10;

DBMS_OUTPUT.PUT_LINE(MYSAL);

EXCEPTION

WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE('Use Cursors');

END;

The given above examples illustrated the usage of handling pre-defined exceptions in the

exception section of any PL/SQL block. Likewise all the other pre-defined exceptions can be

handled in the following fashion.

 Using Others

To handle any kind of an exception, use OTHERS. This is a handler that handles any

exception. The example follows:

Example

DECLARE

 MYSAL NUMBER;

MYENAME VARCHAR2(20);

BEGIN

SELECT SAL INTO MYSAL FROM EMP WHERE DEPTNO=10;

DBMS_OUTPUT.PUT_LINE(MYSAL);

SELECT ENAME INTO MYENAME FROM EMP WHERE EMPNO=&X;

DBMS_OUTPUT.PUT_LINE('THE NAME OF THE EMPLOYEE IS '||MYENAME);

EXCEPTION

WHEN TOO_MANY_ROWS THEN

RDBMS Concepts and Oracle8i

284

Exception

Raised when ...

ACCESS_INTO_NULL
User tries to assign values to the attributes of an uninitialized

(atomically null) object.

COLLECTION_IS_NULL

User tries to apply collection methods other than EXISTS to

an uninitialized (atomically null) nested table or varray, or

assigns values to the elements of an uninitialized nested

table or varray.

CURSOR_ALREADY_OPEN

User tries to open an already open cursor. A cursor must be

closed before it can be reopened. A cursor FOR loop

automatically opens the cursor to which it refers. So, that

cursor cannot be opened inside the loop.

DUP_VAL_ON_INDEX
User tries to store duplicate values in a database column that

is constrained by a unique index.

INVALID_CURSOR
User tries an illegal cursor operation such as closing an

unopened cursor.

INVALID_NUMBER

In a SQL statement, the conversion of character string to a

number fails because the character string does not represent

a valid number. In procedural statements, VALUE_ERROR

is raised.

LOGIN_DENIED
User tries logging on to Oracle with an invalid username

and/or password.

NO_DATA_FOUND

A SELECT INTO statement returns no rows, or a deleted

element is referenced in a nested table, or an uninitialized

element is referenced in an index-by table. The FETCH

statement is expected to return no rows eventually, so when

that happens, no exception is raised. SQL group functions

such as AVG and SUM always return a value or a null. So, a

SELECT INTO statement that calls a group function will

never raise NO_DATA_FOUND.

DBMS_OUTPUT.PUT_LINE('Use Cursors');

WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('OTHERS EXCEPTION HANDLED');

END;

RDBMS Concepts and Oracle8i

285

Note: Always OTHERS must be the last handler in the Exception Section.

15.4 User-Defined Exceptions

PL/SQL allows users to define their own exceptions. Unlike Predefined exceptions, user-

defined exceptions must be declared exceptions can be raised using one of the following:

• RAISE

• RAISE_APPLICATION_ERROR

In the case of user-defined exceptions, the following three steps must be performed:

• Declare the exception

• Raise the Exception

• Handle the Exception

Declaring Exceptions

Exceptions are declared in the declarative part of a PL/SQL block, subprogram or package. It

contains a name followed by the datatype called Exception. The following syntax shows this:

DECLARE

Ex1 EXCEPTION;

Exception declaration is very much similar to variable declaration.But they cannot appear as a

part of an assignment statement.

 Raising Exceptions

Raising Exceptions means the exception declared by the user is raised explicitly unlike

Predefined exceptions. The keyword RAISE is used to perform this operation. Syntax for

using this is :

 RAISE ex1;

Handling Exceptions

RDBMS Concepts and Oracle8i

286

After the exception is raised, it must be handled. Handling of exceptions is performed using

the exception handling section similar to handling of pre-defined exceptions.

WHEN ex1 THEN

 ……

The following example illustrates this:

Example
DECLARE

 Ex1 EXCEPTION;

 N NUMBER(5):=&x;

BEGIN

 If N > 20000 THEN

 RAISE ex1;

END IF;

EXCEPTION

 WHEN ex1 THEN

 DBMS_OUTPUT.PUT_LINE('Value must not exceed 20000');

END;

Consider another example. The following example adds the accepted value onto the table. If

the salary exceeds 30000 the exception SALARY_RAISE is raised and handled.

DECLARE

ENO NUMBER:=&NO;

NAME VARCHAR2(20):='&B';

SALARY NUMBER:=&P;

SALARY_RAISE EXCEPTION;

BEGIN

IF SALARY > 30000 THEN

 RAISE SALARY_RAISE;

ELSE

 INSERT INTO EMP(EMPNO,ENAME,SAL) VALUES(ENO,NAME,SALARY);

END IF;

EXCEPTION

 WHEN SALARY_RAISE THEN

 DBMS_OUTPUT.PUT_LINE('SALARY EXCEEDS 30000');

END;

RAISE_APPLICATION_ERROR

RDBMS Concepts and Oracle8i

287

Raise_Application_Error stops the program and terminates the block abruptly.

Raise_Application_error is primarily used in triggers to rollback the transaction and give

suitable error messages. The syntax is

RAISE_APPLICATION_ERROR (errornumber , MESSAGE);

where the error messages span between –20000 and –20999. Message is a character data that

can hold upto 2000 bytes. The following example illustrates this:

In the following example, raise_application_error is called if an employee's salary is missing:

DECLARE

 Emp_id number := &no;

 current_salary NUMBER;

 increase number:=&x;

BEGIN

 SELECT sal INTO current_salary FROM emp

 WHERE empno = emp_id;

 IF current_salary IS NULL THEN

 /* Issue user-defined error message. */

 raise_application_error(-20101, 'Salary is missing');

 ELSE

 UPDATE emp SET sal = current_salary + increase

 WHERE empno = emp_id;

 END IF;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RAISE_APPLICATION_ERROR(-20000,’NO MATCHING RECORD’);

END raise_salary;

This program accepts the employee number and the salary increase. If the corresponding

employee is found, it updates the value else it raises an error. Assume 765 is a number which

is not available in the table. The error message in this case will be:

ERROR at line 1:

ORA-20000: NO MATCHING RECORD

ORA-06512: at line 17

Using EXCEPTION_INIT – Use of PRAGMA

RDBMS Concepts and Oracle8i

288

To handle unnamed internal exceptions, you must use the OTHERS handler or the pragma

EXCEPTION_INIT must be used. A pragma is a compiler directive, which can be thought of

as a parenthetical remark to the compiler. Pragmas (also called pseudo instructions) are

processed at compile time, not at run time.

In PL/SQL, the pragma EXCEPTION_INIT tells the compiler to associate an exception name

with an Oracle error number. That allows any internal exception to be referenced by name

and to write a specific handler for it.

PRAGMA EXCEPTION_INIT is given in the declarative part of a PL/SQL block, subprogram,

or package using the syntax

PRAGMA EXCEPTION_INIT(exception_name, Oracle_error_number);

where exception_name is the name of a previously declared exception. The pragma must

appear somewhere after the exception declaration in the same declarative part, as shown in

the following example:

DECLARE

X EXCEPTION;

PRAGMA EXCEPTION_INIT(X,-1400);

BEGIN

 INSERT INTO EMP(EMPNO) VALUES(NULL);

EXCEPTION

WHEN X THEN

DBMS_OUTPUT.PUT_LINE('VALUE CANNOT HOLD NULL VALUES');

END;

In the above example, if a null value is being inserted onto a column which cannot contain

null values, an exception is raised.

 Exceptions Raised in Declarations

Exceptions can be raised in declarations by faulty initialization expressions. For example, the

following declaration raises an exception because the constant limit cannot store numbers

larger than 999:

RDBMS Concepts and Oracle8i

289

DECLARE

 limit CONSTANT NUMBER(3) := 5000; -- raises an exception

BEGIN

 ...

EXCEPTION

 WHEN OTHERS THEN ... -- cannot catch the exception

Handlers in the current block cannot catch the raised exception because an exception raised in

a declaration propagates immediately to the enclosing block.

Exceptions Raised in Handlers

Only one exception at a time can be active in the exception-handling part of a block or

subprogram. So, an exception raised inside a handler propagates immediately to the

enclosing block, which is searched to find a handler for the newly raised exception. From

there on, the exception propagates normally. Consider the following example:

Example

EXCEPTION

 WHEN INVALID_NUMBER THEN

 INSERT INTO ... -- might raise DUP_VAL_ON_INDEX

 WHEN DUP_VAL_ON_INDEX THEN . -cannot catch the exception

Branching to or from an Exception Handler

A GOTO statement cannot branch into an exception handler; nor can it branch from an

exception handler into the current block. For example, the following GOTO statement is

illegal:

DECLARE

 pe_ratio NUMBER(3,1);

BEGIN

 DELETE FROM stats WHERE symbol = 'XYZ';

 SELECT price / NVL(earnings,0) INTO pe_ratio FROM stocks

 WHERE symbol = 'XYZ';

 <<my_label>>

 INSERT INTO stats (symbol, ratio) VALUES ('XYZ', pe_ratio);

RDBMS Concepts and Oracle8i

290

EXCEPTION

 WHEN ZERO_DIVIDE THEN

 pe_ratio := 0;

 GOTO my_label; -- illegal branch into current block

However, a GOTO statement can branch from an exception handler into an enclosing block.

Using SQLCODE and SQLERRM

In an exception handler, the functions SQLCODE and SQLERRM can be used to find out

which error has occurred and to get the associated error message.

For internal exceptions, SQLCODE returns the number of the Oracle error. The number that

SQLCODE returns is negative unless the Oracle error is no data found, in which case

SQLCODE returns +100. SQLERRM returns the corresponding error message. The message

begins with the Oracle error code.

For user-defined exceptions, SQLCODE returns +1 and SQLERRM returns the message

User-Defined Exception

Unless you used the pragma EXCEPTION_INIT to associate the exception name with an

Oracle error number, in which case SQLCODE returns that error number and SQLERRM

returns the corresponding error message. The maximum length of an Oracle error message is

512 characters including the error code, nested messages, and message inserts such as tables

and column names.

If no exception has been raised, SQLCODE returns zero and SQLERRM returns the message.

ORA-0000: normal, successful completion

An error number can be passed to SQLERRM, in which case SQLERRM returns the message

associated with that error number. Make sure you pass It must be ensured that negative error

numbers are not passed to SQLERRM. In the following example, you pass positive numbers

and so get unwanted results:

DECLARE

RDBMS Concepts and Oracle8i

291

 ...

 err_msg VARCHAR2(100);

BEGIN

 ...

 /* Get all Oracle error messages. */

 FOR err_num IN 1..9999 LOOP

 err_msg := SQLERRM(err_num); -- wrong; should be -err_num

 INSERT INTO errors VALUES (err_msg);

 END LOOP;

END;

Passing a positive number to SQLERRM always returns the message

User-Defined Exception

When +100 is passed, in which case SQLERRM returns the message:

ORA-01403: no data found

Passing a zero to SQLERRM always returns the following message:

ORA-0000: normal, successful completion

SQLCODE or SQLERRM cannot be used directly in a SQL statement. Instead, their values

must assigned to local variables, which can then be used in the SQL statement, as the

following example shows:

Example

DECLARE

 err_num NUMBER;

 err_msg VARCHAR2(100);

BEGIN

 ...

EXCEPTION

 ...

 WHEN OTHERS THEN

 err_num := SQLCODE;

 err_msg := SUBSTR(SQLERRM, 1, 100);

 INSERT INTO errors VALUES (err_num, err_msg);

RDBMS Concepts and Oracle8i

292

The string function SUBSTR ensures that a VALUE_ERROR exception (for truncation) is not

raised when you assign the value of SQLERRM to err_msg. SQLCODE and SQLERRM are

especially useful in the OTHERS exception handler because they tell which internal exception

was raised.

15.5 Unhandled Exceptions

Remember, if it cannot find a handler for a raised exception, PL/SQL returns an unhandled

exception error to the host environment, which determines the outcome. For example, in the

Oracle Precompilers environment, any database changes made by a failed SQL statement or

PL/SQL block are rolled back.

Unhandled exceptions can also affect subprograms. If you exit a subprogram successfully,

PL/SQL assigns values to OUT parameters. However, if you exit with an unhandled

exception, PL/SQL does not assign values to OUT parameters. Also, if a stored subprogram

fails with an unhandled exception, PL/SQL does not roll back database work done by the

subprogram.

Unhandled exceptions can be avoided by coding an OTHERS handler at the topmost level of

every PL/SQL block and subprogram.

How Exceptions Propagate

When an exception is raised, if PL/SQL cannot find a handler for it in the current block or

subprogram, the exception propagates. That is, the exception reproduces itself in successive

enclosing blocks until a handler is found or there are no more blocks to search. In the latter

case, PL/SQL returns an unhandled exception error to the host environment.

An exception can propagate beyond its scope, that is, beyond the block in which it is

declared. Consider the following example:

BEGIN

 ...

 DECLARE ---------- sub-block begins

 past_due EXCEPTION;

RDBMS Concepts and Oracle8i

293

 BEGIN

 ...

 IF ... THEN

 RAISE past_due;

 END IF;

 END; ------------- sub-block ends

EXCEPTION

 ...

 WHEN OTHERS THEN

 ROLLBACK;

END;

Because the block in which it was declared has no handler for the exception named past_due,

it propagates to the enclosing block. But, according to the scope rules, enclosing blocks cannot

reference exceptions declared in a sub-block. So, only an OTHERS handler can catch the

exception.

15.6 Short Summary

Exceptions are error conditions or warnings that are raised whenever the programs raise any

errors. Exceptions are of three types viz:

• Predefined Exceptions

• User Defined exceptions

• Un defined Exceptions

Some of the predefined exceptions are

ZERO_DIVIDE,NO_DATA_FOUND, INVALID_CURSOR and so on.

Raise and Raise_Application_Error are two statements that are used to handle user-defined

exceptions.

Pragma are precompiler directive that attaches the error number to the user-defined

exception.

RDBMS Concepts and Oracle8i

294

15.7 Brain Storm

1. Runtime errors are handled by the____________of the PL/SQL block

2. Which of the following is not a pre-defined exception?

No_dat_found

Invalid_null

Login_denied

Timeout_on_resource

3. Exception_init is used to handle_____________

4. Exceptions raised in the declarative part ca be handled in the same block.

a. True b. False

5. SQLCODE returns _______________ for user-defined exceptions.

RDBMS Concept and Oracle 8i

295

Lecture 16

Subprograms

Objectives

After completing this lesson, you should be able to do the following

 Discuss Introduction to Subprograms

 Describe about Procedures to Parameters

 Describe Functions to Notations

 Discuss about Procedures Vs Functions

RDBMS Concept and Oracle 8i

296

Coverage Plan

Lecture 16

16.1 Snap shot

16.2 Introduction to subprograms

16.3 Procedures to parameters

16.4 Functions of notations

16.5 Procedures Vs functions

16.6 Short summary

16.7 Brain Storm

RDBMS Concept and Oracle 8i

297

16.1 Snap Shot

This chapter shows how to use subprograms, which let a user to name and encapsulate a

sequence of statements. Subprograms aid application development by isolating operations.

They are like building blocks.

• Introduction to Subprograms

• Procedures

• Parameter Modes

• Declaring and using procedures and Functions

• Notations

• Procedures Vs Functions

16.2 Introduction TO Subprograms

Subprograms are named PL/SQL blocks that can take parameters and be invoked. PL/SQL

has two types of subprograms called procedures and functions. Generally, a procedure is

used to perform an action and a function to compute a value.

Like unnamed or anonymous PL/SQL blocks, subprograms have a declarative part, an

executable part, and an optional exception-handling part. The declarative part contains

declarations of types, cursors, constants, variables, exceptions, and nested subprograms.

These items are local and cease to exist when you exit the subprogram. The executable part

contains statements that assign values, control execution, and manipulate Oracle data. The

exception-handling part contains exception handlers, which deal with exceptions raised

during execution.

 Advantages of Subprograms

Subprograms provide extensibility; that is, they let you tailor the PL/SQL language to suit

your needs. Subprograms also provide modularity; that is, they let you break a program

down into manageable, well-defined logic modules. This supports top-down design and the

stepwise refinement approach to problem solving.

RDBMS Concept and Oracle 8i

298

Also, subprograms promote reusability and maintainability. Once validated, a subprogram

can be used with confidence in any number of applications. Furthermore, only the

subprogram is affected if its definition changes. This simplifies maintenance and

enhancement.

Finally, subprograms aid abstraction, the mental separation from particulars. To use

subprograms, you must know what they do, not how they work. Therefore, you can design

applications from the top down without worrying about implementation details. Dummy

subprograms (stubs) allow you to defer the definition of procedures and functions until you

test and debug the main program.

16.3 Procedures to Parameters

A Procedure is a subprogram that performs a specific action. The syntax for creating a

procedure is :

CREATE OR REPLACE PROCEDURE <procedurename>[parameter list] AS
…..

 PL/SQL statements

A Procedure contains 2 parts

• Specification

• Body

The specification contains the procedure name, the parameter list and the body contains the

executable statements.

 Parameters

Parameters are the values that are passed to the subprogram for computing values or

performing specific actions. In-turn, the subprograms can return some values which can be

the output of the subprogram. Based on this, the Parameters are classified as

• ACTUAL

• FORMAL

RDBMS Concept and Oracle 8i

299

 Actual Parameters

They are the variables defined in the parameter list of a subprogram call.

Formal Parameters

They are the variables given while declaring subprograms.

Parameter Modes

Parameter Modes define the behavior of the formal parameters. There are three parameter

modes:

• IN

• OUT

• IN OUT

 IN Mode

IN mode is used to read values from the subprogram. It is a read-only variable where reading

alone is done and no assignment is performed. Consider the following example that

illustrates the usage of the IN mode.

Example

CREATE OR REPLACE PROCEDURE DISP_ENAME(ENO IN NUMBER) IS

MNAME VARCHAR2(20);

BEGIN

SELECT ENAME INTO MNAME FROM EMP WHERE EMPNO=ENO;

DBMS_OUTPUT.PUT_LINE(‘THE NAME IS ‘||MNAME);

END;

The procedure gets created. In order to execute the procedure, the statement EXEC is used as

shown below:

RDBMS Concept and Oracle 8i

300

EXEC disp_ename(7902);

Displays,

EXEC DISP_ENAME(7902);

the name is FORD

PL/SQL procedure successfully completed.

This procedure uses the IN mode and displays the name of the employee.

 OUT Mode

The OUT parameter mode is used to return values to the program. Rather it is a write-only

variable. The value can be assigned to this variable. Consider a situation where the employee

name and the salary are to be displayed. The following example shows the usage of the OUT

parameter.

CREATE OR REPLACE PROCEDURE DISP_SAL (ENO IN NUMBER, SALARY OUT NUMBER) AS

 MNAME VARCHAR2(20);

BEGIN

SELECT SAL, ENAME INTO SALARY,MNAME FROM EMP WHERE EMPNO=ENO;

DBMS_OUTPUT.PUT_LINE(‘THE EMPLOYEE NAME IS ‘||MNAME);

END;

Execution cannot be done like the execution of the previous example. Since there is a OUT

parameter, a placeholder must be provided for the out variable value to be assigned. The two

steps in execution of this program at SQL prompt are:

First declare a session variable or local variable using the keyword VAR as shown below:

VAR <variablename> <datatype>

Next, execute the procedure with the arguments specified and replace the out parameter with

the variable defined.

EXEC <procedurename>(value,:<variablename>);

RDBMS Concept and Oracle 8i

301

Since the variable is a session variable, session variables can be called using colon delimiter

(Refer PL/SQL Delimiters)

Finally, print the value placed on the variable using PRINT statement

PRINT <variablename>

The example and the output is shown below:

VAR n NUMBER

EXEC disp_sal(7902,:n);

the employee name is FORD

PL/SQL procedure successfully completed.

PRINT n

 N

 3000

Alternatively, this procedure can be executed inside a PL/SQL block as shown below:

DECLARE

MSAL NUMBER;

MENO NUMBER:=&N;

BEGIN

DISP_SAL(MENO,MSAL);

DBMS_OUTPUT.PUT_LINE(‘THE SALARY IS ‘||MSAL);

END;

When this block gets executed, it displays
Enter value for n: 7902

old 3: Meno number:=&n;

new 3: Meno number:=7902;

the employee name is FORD

the salary is 3000

PL/SQL procedure successfully completed.

RDBMS Concept and Oracle 8i

302

 IN OUT Mode

The IN OUT parameter is used to pass initial values to the subprogram. It is a read-write

variable and can be used for both reading and writing values. Inside the subprogram the IN

out parameter acts like an un-initialized variable. An example for displaying the product

name and the price is shown below:

CREATE OR REPLACE PROCEDURE disp_prod(no IN OUT NUMBER, name OUT

VARCHAR2) AS
BEGIN

SELECT pname,ucSt INTO name,no FROM product WHERE pcode=no;

END;

The output of the above program is ,

Procedure created.

The procedure, which contains an IN OUT parameter, cannot be executed at SQL prompt. A

subprogram that contains an IN OUT parameter must be executed only inside a PL/SQL

block. The below program shows how to execute an IN OUT parameter.

 Example

DECLARE

Name VARCHAR2(20);

Var_x NUMBER:=&X;

BEGIN

 DISP_PROD(VAR_X,NAME);

 DBMS_OUTPUT.PUT_LINE('name is '||name ||' rate is '||var_x);

END;

The program accepts the number and the rate is assigned to the same variable and the name

of the product is assigned to the variable name.

The output would look like:
Enter value for x: 102

old 3: Var_x NUMBER:=&X;

new 3: Var_x NUMBER:=102;

RDBMS Concept and Oracle 8i

303

name is storewell rate is 10000

PL/SQL procedure successfully completed.

The table below illustrates the differences between IN, OUT and IN OUT Parameter modes.

IN OUT IN OUT

Default Must be specified Must be specified

Passes value to a

subprogram

Returns value to the caller Passes initial value to

a sub program and

returns updated value

to the caller

Formal Parameter acts

like a constant

Acts like an uninitialized

variable

Acts like an

uninitialized variable

Formal parameter cannot

be assigned with a value

Formal parameter cannot be

used in an expression and must

be assigned with a value

Formal parameter

must be assigned with

a value

Actual Parameter can be

a constant, literal or an

expression

Actual Parameter is passed by

value(copy of the value is passed

out)

Similar to OUT but the

copy of the value can

be read and written.

Passing Default Values

As the example below shows, you can initialize IN parameters to default values. That way,

different numbers of actual parameters can be passed to a subprogram, accepting or

overriding the default values.

PROCEDURE create_dept (

 new_dname CHAR DEFAULT 'TEMP',

 new_loc CHAR DEFAULT 'TEMP') IS

BEGIN

 INSERT INTO dept

 VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);

If an actual parameter is not passed, the default value of its corresponding formal parameter

is used. Consider the following calls to create_dept:

Exec create_dept;

RDBMS Concept and Oracle 8i

304

Exec create_dept('MARKETING');

Exec create_dept('MARKETING', 'NEW YORK');

The first call passes no actual parameters, so both default values are used. The second call

passes one actual parameter, so the default value for new_loc is used. The third call passes

two actual parameters, so neither default value is used.

Forward Declarations

PL/SQL requires a declaration an identifier before using it. For example, the following

declaration of procedure award_bonus is illegal because award_bonus calls procedure

calc_rating, which is not yet declared when the call is made:

DECLARE

 ...

 PROCEDURE award_bonus (...) IS

 BEGIN

 calc_rating(...); -- undeclared identifier

 ...

 END;

 PROCEDURE calc_rating (...) IS

 BEGIN

 ...

 END;

In this case, this problem can be solved easily by placing procedure calc_rating before

procedure award_bonus. However, the easy solution does not always work. For example,

suppose the procedures are mutually recursive (call each other) or they are defined in

alphabetical order.

PL/SQL solves this problem by providing a special subprogram declaration called a forward

declaration. You can use forward declarations to

• define subprograms in logical or alphabetical order

• define mutually recursive subprograms

• group subprograms in a package

RDBMS Concept and Oracle 8i

305

A forward declaration consists of a subprogram specification terminated by a semicolon. In

the following example, the forward declaration advises PL/SQL that the body of procedure

calc_rating can be found later in the block:

DECLARE

 PROCEDURE calc_rating (...); -- forward declaration

 ...

 /* Define subprograms in alphabetical order. */

 PROCEDURE award_bonus (...) IS

 BEGIN

 calc_rating(...);

 ...

 END;

 PROCEDURE calc_rating (...) IS

 BEGIN

 ...

 END;

Although the formal parameter list appears in the forward declaration, it must also appear in

the subprogram body. The subprogram body can be placed anywhere after the forward

declaration, but they must appear in the same program unit.

16.4 Functions of Notations

A function is a subprogram that computes a value. Functions and procedures are structured

alike, except that functions have a RETURN clause. Functions are created using the following

syntax:

CREATE OR REPLACE FUNCTION <FUNCTIONNAME>[parameter list] RETURN datatype IS

 PL/SQL Statements.

 Return <value/variable>;

END;

An example of selecting the department information is shown below:

Example

CREATE OR REPLACE FUNCTION seldept(dno IN NUMBER) RETURN VARCHAR2 IS

M_dNAME VARCHAR2(20);

RDBMS Concept and Oracle 8i

306

BEGIN

SELECT DNAME INTO M_DNAME FROM DEPT WHERE DEPTNO=DNO;

RETURN M_DNAME;

END;

Displays the corresponding department name.

Function created.

Unlike Procedures, Functions cannot be called using EXEC statement. They must be called

using Select Statement. The following shows this:

SELECT seledept(10) FROM DUAL;

Normally a function is used to compute specific values. They are not meant to perform any

DML operations on the table. For example, if a function tries to insert a record onto a table,

Oracle throws an error. The example illustrates this:

CREATE OR REPLACE FUNCTION INSDEPT(DNO NUMBER,NAME VARCHAR2) RETURN NUMBER

AS

 BEGIN

 INSERT INTO DEPT(DEPTNO,DNAME) VALUES(DNO,NAME);

 RETURN 1;

 END;

Function created.
select insdept(23,'purchase') from dual;

select insdept(23,'purchase’) from dual

 *

ERROR at line 1:

ORA-06571: Function INSDEPT does not guarantee not to update database

The function has to satisfy some purity levels for performing any DML operations. Purity

Level determines to what extent the function does not do any alterations to the database

object. The four levels of purity levels are shown in the following table.

Purity Level Expansion Description

WNDS Write No Database State Function does not perform any DML

RDBMS Concept and Oracle 8i

307

operations on tables.

RNDS Read No Database State Reading is restricted from any table

RNPS Read No Package State Function must not alter any packaged

variables

WNPS Write No Package State Function cannot write onto any package

variable.

Depending on the purity level, a function is restricted to the following restrictions:

1. A function callable from a SELECT statement must not perform any operation to any

tables.

2. Functions can take only IN parameter and not OUT and IN OUT.

3. Return type of a function must be a database type.

Notations

When calling a subprogram, the actual parameters are written using either positional or

named notation. That is, the association between an actual and formal parameter can be

indicated by position or name. For example, given the declarations

Example

DECLARE

 acct INTEGER;

 amt REAL;

 PROCEDURE credit (acctno INTEGER, amount REAL) IS ...

you can call the procedure credit in four logically equivalent ways:

BEGIN

credit(acct, amt); -- positional notation

credit(amount => amt, acctno => acct); -- named notation

credit(acctno => acct, amount => amt); -- named notation

credit(acct, amount => amt); -- mixed notation

Positional Notation

RDBMS Concept and Oracle 8i

308

The first procedure call uses positional notation. The PL/SQL compiler associates the first

actual parameter, acct, with the first formal parameter, acctno. And, the compiler associates

the second actual parameter, amt, with the second formal parameter, amount.

Named Notation

The second procedure call uses named notation. The arrow (called an association operator)

associates the formal parameter to the left of the arrow with the actual parameter to the right

of the arrow.

The third procedure call also uses named notation and shows that you can list the parameter

pairs in any order. Therefore, you need not know the order in which the formal parameters

are listed.

Mixed Notation

The fourth procedure call shows that you can mix positional and named notation. In this case,

the first parameter uses positional notation, and the second parameter uses named notation.

Positional notation must precede named notation. The reverse is not allowed. For example,

the following procedure call is illegal:

credit(acctno => acct, amt); -- illegal

16.5 Procedures Vs Functions

The following table lists out the differences between procedures and functions

PROCEDURES FUNCTIONS

Used to perform a specific

task

Used to calculate Values

Does not return values (Can

be explicitly returned using

OUT mode)

Must return 1 value using Return statement (can be made to

return more than 1 value using OUT mode)

RDBMS Concept and Oracle 8i

309

Viewing Procedures and Functions

Procedures and Functions are viewed using the Data_dictionary Views:

SELECT * FROM USER_SOURCE;

Dropping Subprograms

Subprograms when not required can be dropped using Drop command.

Syntax:

DROP FUNCTION <function name>;

DROP PROCEDURE <procedure name>;

16.6 Short Summary

 Subprograms are set of PL/SQL blocks that are stored and executed. They can be of two

types:

• Procedures

• Functions

 Procedures are used to perform specific tasks whereas Functions are used to compute

calculations.

 Functions and Procedures are created using CREATE PROCEDURE / FUNCTION

statement.

 The parameter modes are IN for READ, OUT for WRITE, IN OUT for READ WRITE.

 A function to be callable from a SELECT statement must be pure from any side-effects.

 Functions and procedures are dropped using DROP statement.

16.7 Brain Storm

1. Subprograms are_____________

2. Give any two advantages of subprograms

3. What is the function of a return statement?

4. The variables declared in a subprogram specifications are called_________parameters

RDBMS Concept and Oracle 8i

310

5. The three types of notations followed in calling a subprograms are____________,

_____________, ____________.

6. The default mode for a parameter is_________

7. What do you mean by overloaded subprograms?

8. Default values can be assigned to parameters

a) True b) False

9. A function can have only one return statement

a) True b) False

10. What is a recursive subprogram?

RDBMS Concepts and Oracle8i

311

Lecture 17

Packages

Objectives

After completing this lesson, you should be able to do the following

 Describe Packages and list their possible components

 Create a package to group together related variables, cursors, constants,
exceptions , procedures, and functions

 Make a Package construct either public or private

 Describe about Overloading of Package

RDBMS Concepts and Oracle8i

312

Coverage Plan

Lecture 17

17.1 Snap shot

17.2 Packages

17.3 Specification

17.4 Package body

17.5 Overloading package

17.6 Short summary

17.7 Brain Storm

RDBMS Concepts and Oracle8i

313

17.1 Snap Shot

This chapter shows how to bundle related PL/SQL programming constructs into a package.

The packaged constructs might include a collection of procedures or a pool of type definitions

and variable declarations. For example, a Human Resources package might contain hiring

and firing procedures. Once written, the general-purpose package is compiled, then stored in

an Oracle database, where, like a library unit, its contents can be shared by many

applications.

� Understanding Packages

� Advantages of Packages

� Package Specification and Body

� Overloading

� Understanding Some of the Packages

17.2 What is a Package?

A package is a schema object that groups logically related PL/SQL types, items, and

subprograms. Packages usually have two parts, a specification and a body, although

sometimes the body is unnecessary. The specification is the interface to your applications; it

declares the types, variables, constants, exceptions, cursors, and subprograms available for

use. The body fully defines cursors and subprograms, and so implements the specification.

A package once compiled and stored, gets life in a session when any of the components of the

package is referred in the session. Then onwards, the variables, arrays, cursors or

subprograms defined in the package are allocated and loaded in the memory for that session

and any change that is done to the components are live for the whole session across

operations and across all the subprograms and triggers. This is unlike a subprogram where

the variables have effect only inside the subprogram and not across programs in the session.

Unlike subprograms, packages cannot be called, parameterized, or nested. Still, the format of

a package is similar to that of a subprogram as shown below.

CREATE PACKAGE name AS -- specification (visible part)

 -- public type and item declarations

 -- subprogram specifications

RDBMS Concepts and Oracle8i

END [name];

CREATE PACKAGE BODY name AS -- body (hidden part)

 -- private type and item declarations

 -- subprogram bodies

[BEGIN

 -- initialization statements]

END [name];

The specification holds public declarations, which are visible to the application. The body

holds implementation details and private declarations, which are hidden from the

application. This concept is very useful when modular applications are build which would

enable a server centric application with all the application related programs and variables

stored as part of the package.

You can debug, enhance, or replace a package body without changing the interface (package

specification) to the package body.

To create packages and store them permanently in an Oracle database, CREATE PACKAGE

and CREATE PACKAGE BODY statements are used. These statements can be executed

interactively from SQL*Plus or Enterprise Manager.

In the example given below, you package a record type, a cursor, and two employment

procedures are packaged. Notice that the procedure hire_employee uses the database

sequence empno_seq and the function SYSDATE to insert a new employee number and hire

date, respectively.

CREATE PACKAGE emp_actions AS -- specification

314

RDBMS Concepts and Oracle8i

315

PROCEDURE hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER);

 PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS -- body

PROCEDURE hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER) IS

 BEGIN

INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,

 mgr, SYSDATE, sal, comm, deptno);

 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

END emp_actions;

This package creates two procedures called hire_employee and fire_employee. The two

procedures can be executed in the following way:
EXEC EMP_ACTIONS.HIRE_EMPLOYEE('SUDHA','MANAGER',7902,10000,200,10);

EXEC EMP_ACTIONS.FIRE_EMPLOYEE(2);

Only the declarations in the package specification are visible and accessible to applications.

Implementation details in the package body are hidden and inaccessible. So, the body

(implementation) can be changed without having to recompile the calling programs.

 Advantages of Packages

Packages offer several advantages: modularity, easier application design, information hiding,

added functionality, and better performance.

RDBMS Concepts and Oracle8i

316

 Modularity

Packages logically related types, items, and subprograms in a named PL/SQL module to be

encapsulated. Each package is easy to understand, and the interfaces between packages are

simple, clear, and well defined. This aids application development.

 Easier Application Design

When designing an application, all that is needed initially is the interface information in the

package specifications. A specification can be coded and compiled without its body. Then,

stored subprograms that reference the package can be compiled as well. The package bodies

fully until the user is ready to complete the application.

 Information Hiding

With packages, you can specify which types, items, and subprograms are public (visible and

accessible) or private (hidden and inaccessible). For example, if a package contains four

subprograms, three might be public and one private. The package hides the definition of the

private subprogram so that only the package (not your application) is affected if the

definition changes. This simplifies maintenance and enhancement. Also, by hiding

implementation details from users, you protect the integrity of the package.

Added Functionality

Packaged public variables and cursors persist for the duration of a session. So, they can be

shared by all subprograms that execute in the environment. Also, they allow data to be

maintained across transactions without having to store it in the database.

 Better Performance

When a packaged subprogram is called for the first time, the whole package is loaded into

memory. So, later calls to related subprograms in the package require no disk I/O. Also,

packages stop cascading dependencies and so avoid unnecessary recompiling. For example, if

RDBMS Concepts and Oracle8i

317

the definition of a packaged function is changed. Oracle need not recompile the calling

subprograms because they do not depend on the package body.

17.3 Package Specification

The package specification contains public declarations. The scope of these declarations is local

to the database schema and global to the package. So, the declared items are accessible from

the application and from anywhere in the package.

The specification lists the package resources available to applications. All the information that

the application needs to use the resources is in the specification. For example, the following

declaration shows that the function named fac takes one argument of type INTEGER and

returns a value of type INTEGER:

FUNCTION fac (n INTEGER) RETURN INTEGER; -- returns n!

That is the information that need the user to call the function. The underlying

implementation of fac (whether it is iterative or recursive, for example). Be need not

considered

Only subprograms and cursors have an underlying implementation or definition. So, if a

specification declares only types, constants, variables, and exceptions, the package body is

unnecessary. Consider the following bodiless package:

-- a bodiless package

CREATE or replace PACKAGE trans_data AS

 TYPE TimeRec IS RECORD (

 minutes SMALLINT,

 hours SMALLINT);

 TYPE TransRec IS RECORD (category VARCHAR2(1),account INTEGER,amount

REAL,

 time TimeRec);

 minimum_balance CONSTANT REAL := 10.00;

 number_processed INTEGER;

 insufficient_funds EXCEPTION;

END trans_data;

RDBMS Concepts and Oracle8i

318

The package trans_data needs no body because types, constants, variables, and exceptions do

not have an underlying implementation. Such packages global variables-usable by

subprograms and database triggers-that persist throughout a session to be defined

 Referencing Package Contents

To reference the types, items, and subprograms declared within a package specification, the

dot notation is to be used as follows:

package_name.type_name

package_name.item_name

package_name.subprogram_name

Package contents can be referenced from a database trigger, a stored subprogram, an Oracle

Precompiler application, an OCI application, or an Oracle tool such as SQL*Plus.

For example, the packaged procedure hire_employee might be called from SQL*Plus, as

follows:

EXECUTE emp.actions.hire_employee('TATE', 'CLERK', ...);

17.4 Package Body

The package body implements the package specification. That is, the package body contains

the definition of every cursor and subprogram declared in the package specification. Keep in

mind that subprograms defined in a package body are accessible outside the package only if

their specifications also appear in the package specification.

To match subprogram specifications and bodies, PL/SQL does a token-by-token comparison

of their headers. So, except for white spaces. the headers must match word for word.

Otherwise, PL/SQL raises an exception, as the following structure shows:

CREATE PACKAGE emp_actions1 AS

 ...

PROCEDURE calc_bonus (date_hired emp.hiredate%TYPE, ...);

END emp_actions;

CREATE PACKAGE BODY emp_actions1 AS

RDBMS Concepts and Oracle8i

319

 ...

 PROCEDURE calc_bonus (date_hired DATE, ...) IS

-- parameter declaration raises an exception because 'DATE'

 -- does not match 'emp.hiredate%TYPE' word for word

 BEGIN

 ...

 END calc_bonus;

END emp_actions;

The package body can also contain private declarations, which define types and items

necessary for the internal workings of the package. The scope of these declarations is local to

the package body. Therefore, the declared types and items are inaccessible except from within

the package body. Unlike a package specification, the declarative part of a package body can

contain subprogram bodies.

Following the declarative part of a package body is the optional initialization part, which

typically holds statements that initialize some of the variables previously declared in the

package.

The initialization part of a package plays a minor role because, unlike subprograms, a

package cannot be called or passed parameters. As a result, the initialization part of a package

is run only once. That is the first time you reference the package is referenced.

Recall that if a specification declares only types, constants, variables, and exceptions, the

package body is unnecessary. However, the body can still be used to initialize items declared

in the specification.

 Examples

Consider the package named sord given below. The package specification declares the

following subprograms:

• procedures ordproc, custchk and prodchk

After writing the package, applications that reference its types, call its subprograms, use its

cursor, and raise its exception can be developed. When the package is created. it is stored in

an Oracle database for general use.

RDBMS Concepts and Oracle8i

320

CREATE OR REPLACE PACKAGE SORD AS

PROCEDURE CUSTCHK(CNO NUMBER);

PROCEDURE PRODCHK(PNO NUMBER);

PROCEDURE ORDPROC(CNO NUMBER,PNO NUMBER,QTY NUMBER);

END;

CREATE OR REPLACE PACKAGE BODY SORD AS

 FUNCTION CHKQTY(PNO NUMBER,QTY NUMBER) RETURN NUMBER IS

 STOCK NUMBER:=0;

 BEGIN

 SELECT STOC INTO STOCK FROM PRODUCT WHERE PCODE=PNO;

IF STOCK > QTY THEN

 RETURN 1;

 ELSE

 RETURN -1;

 END IF;

 END;

PROCEDURE PRODUPD(PNO NUMBER,QT NUMBER) IS

 BEGIN

 UPDATE PRODUCT SET STOC=STOC-QT WHERE PCODE=PNO;

 END;

PROCEDURE CUSTCHK(CNO NUMBER) IS

 C_ID NUMBER;

 BEGIN

 SELECT CCODE INTO C_ID FROM CUSTOMER WHERE CCODE=CNO;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RAISE_APPLICATION_ERROR(-20000,'CCODE NOT FOUND');

 END;

 PROCEDURE PRODCHK(PNO IN NUMBER) AS

 P_ID NUMBER;

 BEGIN

 SELECT PCODE INTO P_ID FROM PRODUCT WHERE PCODE=PNO;

EXCEPTION

WHEN NO_DATA_FOUND THEN

 RAISE_APPLICATION_ERROR(-20000,'PCODE NOT FOUND');

 END;

 PROCEDURE ORDPROC(CNO IN NUMBER,PNO IN NUMBER,QTY IN NUMBER) AS

 RES NUMBER:=0;

 OC NUMBER:=0;

BEGIN

 CUSTCHK(CNO);

 PRODCHK(PNO);

RDBMS Concepts and Oracle8i

321

 RES:=CHKQTY(PNO,QTY);

 IF RES=-1 THEN

 RAISE_APPLICATION_ERROR(-20000,'SORRY NO STOCK');

ELSE

SELECT MAX(OCODE)+1 INTO OC FROM ORDERS;

 INSERT INTO ORDERS(OCODE,CCODE,ODAT)

 VALUES(OC,CNO,SYSDATE);

 INSERT INTO ORDPRD VALUES(OC,PNO,QTY);

 PRODUPD(PNO,QTY);

 END IF;

 END;

 END;

 END;

The output of the program would be:

SQL> EXEC SORD.ORDPROC(1002,101,20);

begin SORD.ORDPROC(1002,101,20); end;

*

ERROR at line 1:

ORA-20000: SORRY NO STOCK

ORA-06512: at "HEMA.SORD", line 37

ORA-06512: at line 1

When a quantity that is more than the existing is entered, this raises an

error. Look at the following:

SELECT STOC FROM PRODUCT WHERE PCODE=104

 STOC

 716.1

EXEC SORD.ORDPROC(1002,104,20);

PL/SQL procedure successfully completed.

SELECT STOC FROM PRODUCT WHERE PCODE=104;

 STOC

 696.1

RDBMS Concepts and Oracle8i

322

the product stoc is updated.

Remember, the initialization part of a package is run just once, the first time you reference the

package.

Every time the procedure ordproc is called, a record in the table orders is inserted if the

product code and the customer code exist and there is sufficient qty on hand.

 Private versus Public Items

 Consider the following example:

 CREATE OR REPLACE PACKAGE TESTVAR AS

 X NUMBER:=0;

 END;

Look again at the package sord. The package body declares a variable named X, which is

initialized to zero. Unlike items declared in the specification of SORD, items declared in the

body are restricted to use within the package. Therefore, PL/SQL code outside the package

cannot reference the function chkqty. Such items are termed private.

However, items declared in the specification of testvar such as the variable x are visible

outside the package. Therefore, any PL/SQL code can reference the variable x. Such items are

termed public.

When items are to be maintained they must be throughout a session or across transactions,

placed in the declarative part of the package body. If the items are to be made public, in the

package specification.

Note: When a packaged subprogram remotely, the whole package is reinstantiated and its previous state is lost.

17.5 Overloading Package

PL/SQL allows two or more packaged subprograms to have the same name. This option is

useful when a subprogram has to accept parameters that have different datatypes.

RDBMS Concepts and Oracle8i

323

In the next example, packaging of a mini calculator is shown. Assume that the operations to

be performed are addition, subtraction , multiplication and division. This procedure is an

example of OVERLOADING.

CREATE OR REPLACE PACKAGE MYCALCI AS

PROCEDURE ADDNUM(X IN NUMBER,Y IN NUMBER);

PROCEDURE SUBNUM(X IN NUMBER,Y IN NUMBER);

PROCEDURE MULTNUM(X IN NUMBER,Y IN NUMBER);

PROCEDURE DIVNUM(X IN NUMBER,Y IN NUMBER);

PROCEDURE ADDNUM(X IN NUMBER,Y IN NUMBER,X1 IN NUMBER,Y1 IN NUMBER);

PROCEDURE SUBNUM(X IN NUMBER,Y IN NUMBER,X1 IN NUMBER,Y1 IN NUMBER) ;

PROCEDURE MULTNUM(X IN NUMBER,Y IN NUMBER,X1 IN NUMBER,Y1 IN NUMBER);

PROCEDURE AVGNUM(X IN NUMBER,Y IN NUMBER,X1 IN NUMBER,Y1 IN NUMBER) ;

END;

CREATE OR REPLACE PACKAGE BODY MYCALCI IS

PROCEDURE ADDNUM(X IN NUMBER,Y IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=X+Y;

DBMS_OUTPUT.PUT_LINE('THE TOTAL IS '||RES);

END;

PROCEDURE SUBNUM(X IN NUMBER,Y IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=X-Y;

DBMS_OUTPUT.PUT_LINE('THE DIFFERENCE IS '||RES);

END;

PROCEDURE MULTNUM(X IN NUMBER,Y IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=X*Y;

DBMS_OUTPUT.PUT_LINE('THE RESULT IS '||RES);

END;

PROCEDURE DIVNUM(X IN NUMBER,Y IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=X/Y;

DBMS_OUTPUT.PUT_LINE('THE RESULT IS '||RES);

END;

PROCEDURE ADDNUM(X IN NUMBER,Y IN NUMBER, X1 IN NUMBER,Y1 IN NUMBER) IS

RES NUMBER:=0;

RDBMS Concepts and Oracle8i

324

BEGIN

RES:=X+Y+X1+Y1;

DBMS_OUTPUT.PUT_LINE('THE TOTAL IS '||RES);

END;

PROCEDURE SUBNUM(X IN NUMBER,Y IN NUMBER, X1 IN NUMBER,Y1 IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=X-Y-X1-Y1;

DBMS_OUTPUT.PUT_LINE('THE DIFFERENCE IS '||RES);

END;

PROCEDURE MULTNUM(X IN NUMBER,Y IN NUMBER, X1 IN NUMBER,Y1 IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=X*Y*X1*Y1;

DBMS_OUTPUT.PUT_LINE('THE RESULT OF FOUR NUMBERS ARE '||RES);

END;

PROCEDURE AVGNUM(X IN NUMBER,Y IN NUMBER, X1 IN NUMBER,Y1 IN NUMBER) IS

RES NUMBER:=0;

BEGIN

RES:=(X+Y+X1+Y1)/4;

DBMS_OUTPUT.PUT_LINE('THE AVERAGE OF THE NUMBERS ARE '||RES);

END;

END;

/

The output would look like:

SQL> EXEC MYCALCI.SUBNUM(34,2);

THE DIFFERENCE IS 32

PL/SQL procedure successfully completed.

SQL> EXEC MYCALCI.SUBNUM(100,1,2,3);

THE DIFFERENCE IS 94

PL/SQL procedure successfully completed.

SQL> EXEC MYCALCI.AVGNUM(12,20,30,40);

THE AVERAGE OF THE NUMBERS ARE 25.5

PL/SQL procedure successfully completed.

RDBMS Concepts and Oracle8i

325

The first procedure accepts addnum accepts two numbers, while the second procedure

accepts four numbers.. Yet, each procedure handles the data appropriately.

 Package STANDARD

A package named STANDARD defines the PL/SQL environment. The package specification

globally declares types, exceptions, and subprograms, which are available automatically to

every PL/SQL program. For example, package STANDARD declares the following built-in

function named ABS, which returns the absolute value of its argument:

FUNCTION ABS (n NUMBER) RETURN NUMBER;

The contents of package STANDARD are directly visible to applications. So, can be called

ABS from a database trigger, a stored subprogram, an Oracle Precompiler application, an OCI

application, and various Oracle tools including Oracle Forms, Oracle Reports, and SQL*Plus.

If ABS is redeclared in a PL/SQL program, the local declaration overrides the global

declaration. However, the built-in function can still be called by using dot notation, as

follows:

... STANDARD.ABS(x) ...

Most built-in functions are overloaded. For example, package STANDARD contains the

following declarations:

FUNCTION TO_CHAR (right DATE) RETURN VARCHAR2;

FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR2;

FUNCTION TO_CHAR (left DATE, right VARCHAR2) RETURN VARCHAR2;

FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR2;

PL/SQL resolves a call to TO_CHAR by matching the number and datatypes of the formal

and actual parameters.

Product-specific Packages

Oracle and various Oracle tools are supplied with product-specific packages that help

PL/SQL-based applications to be built. For example, Oracle is supplied with the packages

RDBMS Concepts and Oracle8i

326

DBMS_STANDARD, DBMS_OUTPUT, DBMS_PIPE, UTL_FILE, UTL_HTTP, DBMS_SQL,

DBMS_ALERT and others.

DBMS_STANDARD

Package DBMS_STANDARD provides language facilities that help the applications to

interact with Oracle. For instance, a procedure named raise_application_error allows

user-defined error messages to be issued. This way errors can be reported to an application

and the returning of unhandled exceptions can be avoided.

DBMS_OUTPUT

Package DBMS_OUTPUT enables the output to be displayed from PL/SQL blocks and

subprograms, which makes it easier to test and debug them. The put_line procedure outputs

information to a buffer in the SGA. The information is displayed by calling the procedure

get_line or by setting SERVEROUTPUT ON in SQL*Plus or Enterprise Manager.

For example, suppose the following stored procedure is created.

CREATE PROCEDURE calc_payroll (payroll IN OUT REAL) AS

 CURSOR c1 IS SELECT sal,comm FROM emp;

BEGIN

 payroll := 0;

 FOR c1rec IN c1 LOOP

 c1rec.comm := NVL(c1rec.comm, 0);

 payroll := payroll + c1rec.sal + c1rec.comm;

 END LOOP;

 /* Display debug info. */

 dbms_output.put_line('payroll: ' || TO_CHAR(payroll));

END calc_payroll;

When the following commands are issued. SQL*Plus displays the value of

payroll calculated by the procedure:

SET SERVEROUTPUT ON

VARIABLE num NUMBER

EXECUTE calc_payroll(:num)

RDBMS Concepts and Oracle8i

327

 This would display

payroll: 33525

DBMS_PIPE

Package DBMS_PIPE allows different sessions to communicate over named pipes. (A pipe is

an area of memory used by one process to pass information to another.) The procedures

pack_message and send_message can be used to pack a message into a pipe, then send it to

another session in the same instance.

At the other end of the pipe, the procedures receive_message and unpack_message can be

used to receive and unpack (read) the message. Named pipes are useful in many ways.

For example, you can write routines in C that allow external servers to collect information,

then send it through pipes to procedures stored in an Oracle database.

UTL_FILE

Package UTL_FILE allows PL/SQL programs to read and write operating system (OS) text

files. It provides a restricted version of standard OS stream file I/O, including open, put, get,

and close operations.

When a text file is to be read or written is called, you call the function fopen, which returns a

file handle for use in subsequent procedure calls. For example, the procedure put_line writes

a text string and line terminator to an open file. The procedure get_line reads a line of text

from an open file into an output buffer.

PL/SQL file I/O is available on both the client and server sides. However, on the server side,

file access is restricted to those directories explicitly listed in the accessible directories list,

which is stored in the Oracle initialization file.

UTL_HTTP

Package UTL_HTTP allows PL/SQL programs to make hypertext transfer protocol (HTTP)

callouts. It can be used to retrieve data from the internet, or to call Oracle Web Server

cartidges. The package has two entry points, each of which accepts a URL (universal resource

RDBMS Concepts and Oracle8i

328

locator) string, contacts the specified site, and returns the requested data, which is usually in

hypertext markup language (HTML) format.

DBMS_SQL

Package DBMS_SQL allows PL/SQL to execute SQL data definition and data manipulation

statements dynamically at run time.

DBMS_ALERT

Package DBMS_ALERT database triggers to be used to alert an application when specific

database values change. The alerts are transaction based and asynchronous (that is, they

operate independently of any timing mechanism). For example, a company might use this

package to update the value of its investment portfolio as new stock and bond quotes arrive.

 Guidelines

When writing packages, they should be as general as possible so that they can be reused in

future applications. Avoid writing packages that duplicate some feature already provided by

Oracle.

Package specifications reflect the design of the application. So, define them before the

package bodies. Place in a specification only the types, items, and subprograms that must be

visible to users of the package. That way, other developers cannot misuse the package by

basing their code on irrelevant implementation details.

To reduce the need for recompiling when code is changed, place as few items as possible in a

package specification. Changes to a package body do not require Oracle to recompile

dependent procedures. However, changes to a package specification require Oracle to

recompile every stored subprogram that references the package.

RDBMS Concepts and Oracle8i

329

17.6 Short Summary

 Packages are a collection of procedures, functions, variables and exceptions. They define

the application. Packages are mainly used to increase the performance since any call to a

packaged object immediately loads the entire package to the memory.

 Packages provide encapsulation by way of writing local procedures and functions inside

the body of the package which is not visible to application.

 They also support Polymorphism by the way of Overloading subprograms which differ

in arguments or datatypes.

 Different built-in packages are DBMS_OUTPUT.PUT_LINE , DBMS_SQL, DBMS_PIPE

and so on.

17.7 Brain Storm

1. Packages is a collection of___________________

2. The two parts of packages are ______________&_________

3. Advantages of packages are ___________, __________ & ___________

4. What is the use of restrict_references?

5. Can we acess a variable declared witin a package body outside a package?

6. Name two available packages

7. What is DBMS_SQL package used for?

8. How will you refer a subprogram within a package?

…

RDBMS Concepts and Oracle 8i

330

Lecture 18

Triggers

Objectives

After completing this lesson, you should be able to do the following

 Describe database triggers and their use

 Create database triggers

 Describe database trigger firing rules

 Remove database triggers

RDBMS Concepts and Oracle 8i

331

Coverage Plan

Lecture 18

18.1 Snap shot

18.2 Triggers

18.3 Creating triggers

18.4 Cascading triggers

18.5 Mutating and constraining tables

18.6 Enabling and disabling triggers

18.7 Short summary

18.8 Brain Storm

RDBMS Concepts and Oracle 8i

332

18.1 Snap Shot

This chapter shows how to enforce complex constraints using the concept called Triggers. The

trigger includes PL/SQL statements that get automatically invoked whenever any DML

operations are performed on a table.

• Understanding Triggers

• Types of Triggers

• Designing Triggers

• Writing Trigger body

• Using INSTEAD OF triggers

• Disabling and Enabling triggers

18.2 Triggers

A database trigger is a stored PL/SQL block that is associated with a table. Triggers are

automatically executed when a specified SQL statement is issued against the table. Triggers

are mainly used for the following purposes:

• To automatically generate values

• To provide auditing.

• To prevent invalid transactions.

• To check for complex integrity constraints that cannot be given in Constraints.

• To maintain replicate tables.

Triggers contain PL/SQL constructs and they can be fired only for DML Statements like

INSERT, UPDATE and DELETE. Triggers are event based.

 Parts of a Trigger

A Trigger contains 3 parts. They are

• Triggering event or statement

• Trigger Restriction

• Trigger Action

RDBMS Concepts and Oracle 8i

333

 Triggering event or Statement

It is a SQL statement that causes the trigger to be fired. The valid statements are the DML

statements – Insert, Update or Delete. Additionally, trigger can be made to be fired when a

particular column is updated. Also it can contain multiple DML statements.

 Triggering Restriction

This is a Boolean expression which must be TRUE for the trigger to be fired.

 Trigger Action

This is a procedure containing SQL and PL/SQL statements to be executed when a triggering

statement is issued and also the triggering restriction is true.

 Types of Triggers

Triggers are classified into different types depending on when the trigger is to be fired.

They are:

• BEFORE

• AFTER

• INSTEAD OF (dealt later in this chapter)

 BEFORE / AFTER

The BEFORE option of a trigger is used to specify when the trigger must be fired. If the

option BEFORE is chosen, the trigger is fired before the triggering statement is executed. In

the case of AFTER, the trigger is fired after executing the statement.

 When to Use Before and After

BEFORE

RDBMS Concepts and Oracle 8i

334

Before triggers are used when the triggering action determines whether the triggering

statement must be allowed to be completed or not. This eliminates un-necessary processing of

the triggering statement. Before triggers can also be used to derive specific column values

before completing an Insert or Update statement.

AFTER

This trigger is executed after the trigger statement is issued. It is used when the trigger

statement has to be completed before the trigger action. If a Before Trigger is already present,

an After trigger can be used to perform different actions on the same statement.

Based on how many records are to be affected by the trigger, triggers can be classified as;

• Row Level

• Statement Level

 Row Level Triggers

These types of triggers are fired for each row that is affected by the triggering statement. For

example, UPDATE statement for multiple rows of a table. In this case, the ROW level triggers

are executed for every row that is affected by the UPDATE statement.

 Statement Level Triggers

This trigger is fired once on behalf of the triggering statement regardless of the number of

rows in the table that the triggering statement affects.

Based on the combinations of the above, there are twelve types of triggers that can be written

on a table.

Statement Level Row Level

Before Insert

Before Update

Before Delete

Before Insert

Before Update

Before Delete

RDBMS Concepts and Oracle 8i

335

After Insert

After Update

After Delete

After Insert

After Update

After Delete

18.3 Creating Triggers

Triggers are created using CREATE TRIGGER statement. The name of the trigger must be

unique with respect to other triggers in the same schema. The syntax for creating the trigger

is:

Syntax:

CREATE OR REPLACE TRIGGER <triggername> [BEFORE/AFTER]

[INSERT/UPDATE/DELETE] ON <tablename> [FOR EACH ROW] [WHEN <condition>]

The following example creates a simple trigger.

 Example

CREATE OR REPLACE TRIGGER instremp BEFORE INSERT ON emp

BEGIN

DBMS_OUTPUT.PUT_LINE(‘Inserting Record’);

END;

/

The trigger gets created.

When an Insert statement is issued, the output will look like:

INSERT INTO emp (empno,ename,deptno) VALUES (1,'Giri',10);

This would display

Inserting Record

1 row created.

In the above example, the triggering statement is

RDBMS Concepts and Oracle 8i

336

BEFORE INSERT ON emp

Hence the message ‘Inseting record is displayed before the row is created

There is no trigger restriction the body or action of the trigger starts from the Begin

statement.

Example

This trigger displays the total number of records available in the table if insertion is done.

CREATE OR REPLACE TRIGGER INSTR1 BEFORE INSERT ON EMP

DECLARE

X NUMBER;

BEGIN

SELECT COUNT(*) INTO X FROM EMP;

DBMS_OUTPUT.PUT_LINE(X+1 ||' NUMBER OF RECORDS ARE AVAILABLE');

END;

While insertion is done, the output will look like:

insert into emp(empno,ename,deptno) values(12,'hari',30);

15 number of records are available

Before insertion the total records were 14. After insertion the total records increases to 15.

Note here, there is an explicit DECLARE statement and no IS/AS is specfiied. If a trigger

contains any variable, DECLARE must be specified.

The trigger execution is performed in the following ways:

1. All the Before statement triggers are executed.

2. The Before Row Level triggers are executed.

3. After Row Level triggers are executed.

4. After Statement triggers are executed that apply to the statement.

Accessing Column Values

When a trigger action or the trigger body contains statements that require access to the table

values or for checking the new value with the old value, two correlation names are used: -

RDBMS Concepts and Oracle 8i

337

:new and :old. :new refers to the new values entered in the trigger statement and :old refers to

the old existing value in the table. These are also called as pseudorecords since they do not

contain any permanent record. Also these can be given only for row-level triggers. The

following table illustrates the values held by these with respect to the DML operations.

Statement :new :old

Insert New values entered in the

Insert command

Null

Update New values entered in

Update statement

Old values available in

the table

Delete null Old values in the table

They are available for both Before and After triggers.

Example

This example uses the :new and displays the newly inserted record.

CREATE OR REPLACE TRIGGER INSTR2 AFTER INSERT ON DEPT FOR EACH ROW

BEGIN

DBMS_OUTPUT.PUT_LINE(:NEW.DEPTNO||' '||:NEW.DNAME||' '||:NEW.LOC);

END;

The output will look like:

INSERT INTO DEPT VALUES(12,'SALES','CHENNAI');

12 SALES CHENNAI

1 row created.

The following example checks for the deptno availability in the dept table. If the

corresponding deptno is not available in the table it displays a message as shown in the

following example.

CREATE OR REPLACE TRIGGER CHKDEPTNO BEFORE UPDATE OF DEPTNO ON EMP FOR EACH

ROW

DECLARE

OLD_DNO NUMBER;

RDBMS Concepts and Oracle 8i

338

BEGIN

SELECT DEPTNO INTO OLD_DNO FROM DEPT WHERE DEPTNO=:NEW.DEPTNO;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('DEPTNO NOT AVAILABLE');

END;

The output of the program

UPDATE EMP SET DEPTNO=34 WHERE EMPNO=7900;

DEPTNO NOT AVAILABLE

1 row updated.

 Using Referencing Option

The Referencing option can be specified in a trigger body of a row trigger to avoid name

conflicts among the correlation names and tables that might be named.

 Using Conditional Predicates

If more than one type of DML operation can fire a trigger, all the operations can be placed

inside a single trigger each differentiated by what are called conditional predicates.

For referring to Insert operation, INSERTING is used, for Delete operation, DELETING and

for update operation, UPDATING predicates are used. These are Boolean values which

return TRUE only when the statement that fired a trigger is any one of DML statements. The

syntax is given below:

IF INSERTING THEN…..

ELSIF UPDATING THEN …..

ELSIF DELETING THEN …..

END IF;

Example

RDBMS Concepts and Oracle 8i

339

CREATE OR REPLACE TRIGGER prdtrig AFTER INSERT OR UPDATE OR DELETE ON

product

BEGIN

 IF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE(‘Inserting operation’);

 ELSIF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE(‘Updating operation’);

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE(‘Deleting operation’);

 END IF;

END;

 Using Raise_Application_Error

As we have already seen in Exceptions, Raise_Application_Error terminates the operation

abruptly and comes to the SQL prompt. Now, consider a situation such that, a record gets

inserted and the trigger based on that causes another insert on another table.

For example consider the following trigger. This trigger checks for the job and the

corresponding salary in the table. If there is any violation, it reports to the user.

CREATE OR REPLACE TRIGGER CHKSALJOB AFTER INSERT ON EMP FOR EACH ROW

BEGIN

 IF NOT(:NEW.JOB='MANAGER' AND (:NEW.SAL > 4000 AND :NEW.SAL <6000))

THEN

 DBMS_OUTPUT.PUT_LINE('Limit for Manager is between 4000 and

6000');

 END IF;

END;

The trigger gets created. When a record is inserted onto the table EMP which violates the

condition the message is displayed as

INSERT INTO emp (empno,ename,deptno,mgr,job,sal) VALUES

 (1234,'ARUN',20,7902,'MANAGER',8000);

Limit for Manager is between 4000 and 6000

RDBMS Concepts and Oracle 8i

340

1 row created.

Even though the message is displayed, still this does not stop the record from being inserted.

Now let us try to raise this as an exception with RAISE statement and the code is re-written as

follows:

CREATE OR REPLACE TRIGGER CHKSALJOB AFTER INSERT ON EMP FOR EACH ROW

DECLARE

 raise_ex EXCEPTION;

BEGIN

 IF NOT(:NEW.JOB='MANAGER' AND (:NEW.SAL > 4000 AND :NEW.SAL <6000))

THEN

 RAISE raise_ex;

 END IF;

EXCEPTION

 WHEN RAISE_EX THEN

 DBMS_OUTPUT.PUT_LINE('Limit for Manager is between 4000 and

6000');

END;

The trigger is created.

After this, when the insert statement is issued,

INSERT INTO emp(empno,ename,deptno,mgr,job,sal) VALUES

(1234,'ARUN',20,7902,'MANAGER',8000);

Limit for Manager is between 4000 and 6000

1 row created.

Even this does not stop from inserting the record onto the table.

RAISE_APPLICATION_ERROR is used to perform this operation. The following example

does not insert record into the table if the condition is not satisfied.

Example

CREATE OR REPLACE TRIGGER CHKSALJOB AFTER INSERT ON EMP FOR EACH ROW

 BEGIN

RDBMS Concepts and Oracle 8i

341

 IF NOT(:NEW.JOB='MANAGER' AND (:NEW.SAL > 4000 AND :NEW.SAL <6000))

 THEN

 RAISE_APPLICATION_ERROR(-20000,'MANAGER SALARY CANNOT EXCEED 8000 AND

CANNOT BE LESS THAN 4000’);

 END IF;

 END;

The output when record is inserted is :

INSERT INTO emp(empno,ename,deptno,mgr,job,sal) VALUES

(1234,'ARUN',20,7902,'MANAGER',8000);

INSERT INTO emp(empno,ename,deptno,mgr,job,sal) VALUES

(1234,'ARUN',20,7902,'MANAGER',8000)

 *

ERROR at line 1:

ORA-20000: Manager Salary cannot exceed 8000 and cannot be less than 4000

ORA-06512: at "HEMA.CHKSALJOB", line 4

ORA-04088: error during execution of trigger 'HEMA.CHKSALJOB'

18.4 Cascading Triggers

Triggers are said to be cascading whenever the body of the trigger causes another trigger to

be fired. Consider an example such that whenever a product is deleted in the product table

the corresponding record in the ordprd table must be deleted. The following trigger is created

for the ordprd table:

CREATE OR REPLACE TRIGGER ORDPRDDEL AFTER DELETE ON ORDPRD

DECLARE

 X NUMBER:=0;

BEGIN

SELECT COUNT(*) INTO X FROM ORDPRD;

DBMS_OUTPUT.PUT_LINE('RECORD DELETED');

DBMS_OUTPUT.PUT_LINE('RECORDS AVAILABLE ARE '||X);

END;

/ CREATE OR REPLACE TRIGGER PRODDEL AFTER DELETE ON PRODUCT

FOR EACH ROW

BEGIN

DELETE FROM ORDPRD WHERE PCODE=:OLD.PCODE;

END;

RDBMS Concepts and Oracle 8i

342

When a record is deleted,

DELETE FROM product WHERE pcode=102;

record deleted

records available are 18

18. 5 Mutating and Constraining Tables

A mutating table is a table that is currently being modified by an UPDATE, DELETE Or

INSERT statement, or a table that might need to be updated. In other words, the trigger body

or the triggering action must not contain any operations on the same table on which the

trigger is written. They are not considered to be mutating in the case of Statement Triggers.

A constraining table is a table that a triggering statement might need to read either directly

for a SQL statement or indirectly for a declarative statement.

Example

CREATE OR REPLACE TRIGGER INSPROD AFTER INSERT ON PRODUCT FOR EACH ROW

 DECLARE

 TOTREC NUMBER;

 BEGIN

 SELECT COUNT(*) INTO TOTREC FROM PRODUCT;

 DBMS_OUTPUT.PUT_LINE('THE TOTAL RECORDS ARE '||TOTREC);

 END;

Trigger gets created.

When a record is inserted,

INSERT INTO PRODUCT (pcode,pname) VALUES(189,'books');

INSERT INTO PRODUCT(pcode,pname) VALUES(189,'books')

 *

ERROR at line 1:

ORA-04091: table HEMA.PRODUCT is mutating, trigger/function may not see it

ORA-06512: at "HEMA.INSPROD", line 4

ORA-04088: error during execution of trigger 'HEMA.INSPROD'

RDBMS Concepts and Oracle 8i

343

In order to avoid this problem, if the total number of records are to be displayed, use the

trigger along with a package variable. The following example is illustrative of this:

Before writing a trigger, write a package with specification alone:

CREATE OR REPLACE PACKAGE TEST1 AS

N NUMBER:=0;

END;

Thereafter write a Before Trigger as shown below:

CREATE OR REPLACE TRIGGER INSPROD1 BEFORE INSERT ON PRODUCT FOR EACH ROW

BEGIN

SELECT COUNT(*) INTO TEST1.N FROM PRODUCT;

END;

Also write a After Trigger which has the following statements:

CREATE OR REPLACE TRIGGER INSPROD AFTER INSERT ON PRODUCT FOR EACH ROW

DECLARE

TOTREC NUMBER;

BEGIN

TOTREC:=TEST1.N+1;

DBMS_OUTPUT.PUT_LINE('THE TOTAL RECORDS ARE '||TOTREC);

END;

Now, if the insert statement is issued, it displays

INSERT INTO PRODUCT(PCODE,PNAME) VALUES(189,'BOOKS');

THE TOTAL RECORDS ARE 12

1 row created.

 Using Instead of Triggers

Triggers can be written only for tables. But the Instead of Trigger is intended to be written for

views. The Instead of Option in the Create Trigger statement is an alternative way of

modifying views that cannot be modified by the Insert, Update or Delete statements. Recall

the Join View. In the case of Join View, updating or inserting can be done only on the key

preserved table. This trigger is called Instead of Trigger because unlike other triggers, the

RDBMS Concepts and Oracle 8i

344

trigger body is executed instead of executing the triggering statement. The trigger performs

the operations directly on the underlying tables. They are activated for each row.

 The INSTEAD OF Option

INSTEAD OF triggers provide a transparent way of modifying views that cannot be modified

directly through UPDATE, INSERT, and DELETE statements. These triggers are called

INSTEAD OF triggers because, unlike other types of triggers, Oracle fires the trigger instead

of executing the triggering statement. The trigger performs update, insert, or delete

operations directly on the underlying tables.

Users write normal UPDATE, INSERT, and DELETE statements against the view, and the

INSTEAD OF trigger works invisibly in the background to make the right actions take place.

By default, INSTEAD OF triggers are activated for each row.

Views That Are Not Modifiable

A view cannot be modified by UPDATE, INSERT, or DELETE statements if the view query

contains any of the following constructs:

• Set operators

• Group functions

• GROUP BY, CONNECT BY, or START WITH clauses

• DISTINCT operator

• Joins (a subset of join views are updatable)

If a view contains pseudocolumns or expressions, you can only update the view with an

UPDATE statement that does not refer to any of the pseudocolumns or expressions.

Example of an INSTEAD OF Trigger

The following example shows an INSTEAD OF trigger for inserting rows into the

MANAGER_INFO view.

RDBMS Concepts and Oracle 8i

345

CREATE OR REPLACE VIEW manager_info AS

 SELECT e.ename, e.empno, d.dname, d.deptno

 FROM emp e, dept d

 WHERE e.deptno = d.deptno

CREATE OR REPLACE TRIGGER manager_info_insert

INSTEAD OF INSERT ON manager_info FOR EACH ROW

BEGIN

 INSERT INTO emp(EMPNO,ENAME) VALUES(:new.empno, :new.Ename);

 INSERT INTO dept(DEPTNO,DNAME) VALUES(:new.deptno, :new.dname);

END;

Here, instead of executing the statement for the view, the body of the view is executed

thereby inserting records onto the respective tables.

18.6 Enabling Triggers and Disabling triggers

By default, all triggers are automatically enabled when They are created. However, They can

be disabled. Once a task is completed, the trigger can be re-enabled. Enabling and Disabling

triggers are performed using enable and disable keywords.

Syntax:

ALTER TRIGGER <triggername> ENABLE|DISABLE;

Example:

ALTER TRIGGER empdel DISABLE;

For a particular table, all triggers can be enabled using a single command.

ALTER TABLE <tablename> DISABLE ALL TRIGGERS;

Dropping triggers

Triggers are dropped using the Drop Trigger Command. The syntax follows:

Syntax:

RDBMS Concepts and Oracle 8i

346

DROP TRIGGER <triggername>;

Example:
DROP TRIGGER chkprod;

Restrictions on Triggers

Even-though there are various advantages that a trigger can provide there are still some

restrictions in using Triggers.

Trigger body cannot contain ROLLBACK or COMMIT statements. Trigger body must

contain keyword DECLARE for declarative section unlike Subprograms. Trigger

specification must not contain any IS/AS keywords.

18.7 Short Summary

Triggers are set of subprograms that are automatically executed whenever a DML statement

is issued on a particular table. They are used to automatically generate values, prevent invalid

transactions and so on.

Triggers contain 3 parts:

• Triggering Event

• Restriction

• Action

There are 12 types of triggers.

Triggers are created using CREATE TRIGGER statement.

Instead of Triggers are used for Views which contain Joins.

Triggers can be enabled, disabled or dropped.

18.8 Brain Storm

1. The advantages of triggers are_______, _________& ______________

2. How triggers are executed?

3. How will you disable a trigger?

RDBMS Concepts and Oracle 8i

347

4. What are the three triggering statements?

5. Views that cannot be modified by insert, update, delete statements can be modified by

6. Mutating table is________

7. How will you enable the entire trigger for a given table?

8. The two correlation names for row level trigger is______ and ______

9. How Row lever trigger can be created?

10. Alter trigger <trigger name> command is used to_______________

RDBMS Concepts and Oracle 8i

348

Lecture 19

OOPS and Object Concepts

Objectives

 After completing this lesson, you should be able to do the following

 Discuss about Oops and Object Concepts

 Describe Why Objects?

 Discuss about Oracle supported Data Types

 Describe about Collection Types

 Describe Object views

 Discuss about member functions

 Discuss about Using order method

RDBMS Concepts and Oracle 8i

349

Coverage Plan

Lecture 19

19.1 Snap shot

19.2 Why objects?

19.3 Object Oriented

19.4 Oracle supported data types

19.5 Collection types

19.6 Object views

19.7 Member functions

19.8 Using order method

19.9 Short summary

19.10 Brain Storm

RDBMS Concepts and Oracle 8i

350

19.1 Snap Shot

This chapter deals with Object Oriented Programming concepts and creating abstract

datatypes and using the same. This chapter talks about the collection objects, creating Object

tables , using Object views and creating Member Functions.

• OOP concepts

• Creating Abstact Datatypes

• Embedding the object types to tables

• Using Constructor methods

• Understanding Varrays

• Undestanding Nested Tables

• Using REF and DEREF constructs

• Using Member Functions

• Understanding object views

19.2 Why Objects

In general, datatypes like number, varchar2 and date are used. But representation of objects

as real world objects is possible in Object Relational Database Management Systems

(ORDBMS) and Object Related Database Management Systems (OODBMS). In Oracle 8 the

objects are referred to as real world objects by incorporating the features of ORDBMS and

OODBMS.

19.3 Object – Oriented Concepts

The important concepts of the object-oriented methodology are discussed below:

 Classes

CLASS refers to the definition of an object. In simpler terms, it is the blue print for an object.

It is a standard representation consisting of data members and their functions. Functions and

variables that are part of the class declaration of a class definition are considered to be public

members of that class.

RDBMS Concepts and Oracle 8i

351

Abstract datatypes model classes of data within the database. These datatypes can share the

same structure. For example, if you want to move a car, you can either move the car (an

object) or you can break it into its components (tires, steering column etc.), move the

components individually, and then perform a join in the new location. Treating the car as an

object is a more natural way of relating to it and simplifies your interaction with it.

Methods & Messages

A method is the incorporation of a specific behavior assigned to an object. A method is a

function of a particular class. They implement the operations to be performed on a real world

object and the output of the method is message. Thus a message is essentially an executed

function belonging to a class member. The method is the means by which objects

communicate with one another.

Abstraction

Abstract datatypes are a part of the Object Oriented concept called abstraction. It is the

conceptual existence of classes within a database. The structural existence of the abstract

types is sufficient. The methods attached to each level of abstraction may be called from the

higher levels of abstraction.

Consider an example where HOME APPLIANCES refers to a class of data. “Electronic” is a

subclass of the abstract class Home Appliances. The relationship between the new abstract

class “Home Appliances” and the subclass “Electronic” would be known as a supertype to

subtype relationship, in the logical model of a relational database. The class “Home

Appliances” is an abstract class, it has no actual instances of objects in it. It exists to describe

general features that pertain to all Home Appliances, not only Electronic.

Inheritance

Inheritance is the ability of one class to inherit the properties of its ancestor. Inheritance

allows an object to inherit a certain set of attributes from another object while allowing the

addition of specific features.

RDBMS Concepts and Oracle 8i

ABSTRACT CLASS
(Supertype)

• Contains No Objects
• Generic Representation

ABSTRACT CLASS
(Subtype)

• Contains Objects Table Lamp Stereo
• Specific Representation Mixer VCR
 Stabilizer Color Television

Electrical

Home Appliances

Electronic

In addition to inheriting data structures, classes can inherit the behavior of their “parent”

classes – a concept called implementation inheritance. That is, you can execute a method

against an object even if the object does not use that method – provided the method is defined

for one of the classes that are the “parents” of the current object.

During the creation of objects, they inherit the structures of the data elements they are

descended from. For example, if “CAR” were a class of data, then “Ford”, a type of car,

would inherit the structural definitions of “CAR”. From a data perspective, nested abstract

datatypes inherit the representations of their “parents”.

Encapsulation

ORACLE’s Object Oriented implementation is based on a relational system. In a relational

system the means of accessing data is never fully limited. Thus, data within the ORACLE

cannot usually be completely encapsulated. Encapsulation can be achieved by limiting access

to tables and forcing all access to be accomplished via procedures and functions, but this

prevents the realization of the true power of a relational database.

Polymorphism

Polymorphism enables different objects to have methods by the same name that accomplish

similar tasks, but in different ways. Oracle incorporates this feature in Packages by

incorporating the concept of Method Overloading.

352

RDBMS Concepts and Oracle 8i

353

19.4 Oracle Supported Data Types

The Oracle8 database provides support for two distinct types of data: -

• BUILT-IN DATA TYPES

• USER DEFINED DATA TYPES

Built-In Datatypes supported in Oracle have already been discussed.

Object Option

The objects option makes Oracle an object-relational database management system

(ORDBMS), which means that users can define additional kinds of data—specifying both the

structure of the data and the ways of operating on it—and use these types within the

relational model. This approach adds value to the data stored in a database.

Oracle with the objects option stores structured business data in its natural form and allows

applications to retrieve it that way. For that reason it works efficiently with applications

developed using object-oriented programming techniques.

Oracle’s support for user-defined datatypes makes it easier for application developers to

work with complex data like images, audio, and video.

Abstract Data Types (User-Defined Types)

User-defined datatypes use Oracle built-in datatypes and other user-defined datatypes as the

building blocks to model the structure and behavior of data in applications. User-Defined

Datatypes can be classified into two types based on the number of data it can hold. The two

types are

• Simple Object Types

• Collection Object Types

Simple Object Types

RDBMS Concepts and Oracle 8i

354

They are implemented using Abstract Datatypes. These datatypes define the structure of a

datatype, which can be embedded as another datatype for a column.

19.5 Collection Object types

Collection Datatypes are similar to arrays and they can hold multiple values inside a single

column.

Object Types

Object types are abstractions of the real-world entities. It consists of three components.

• Name which is used to identify the object.

• Attributes which are the characteristics of an object.

• Methods or behaviors which are functions or procedures that are written and stored in

the database.

Object types are just templates of an object. A data unit that matches the template is called an

object. Object types can be:

• Single Row Object type

• Multiple – Row Object type

Single Row Object Type

Single Row Object types are object types that are defined for specific columns and can hold

singular value only like other datatypes. They are created as objects, which are further

embedded as a datatype to a column.

Example

 CREATE OR REPLACE TYPE user_date AS OBJECT

 (

 day number(2),

 month number(2),

 year number(2)

RDBMS Concepts and Oracle 8i

355

);

 CREATE OR REPLACE TYPE user_name AS OBJECT

 (

 fname varchar2(20),

 mname varchar2(20),

 lname varchar2(20)

);

CREATE TABLE employee_data

 (

 empno number(3),

 ename user_name,

 dob user_date,

 salary number(9,2)

);

The employee_data table is a relational table with an object type defining one of its columns.

Objects that occupy columns of the relational table are called COLUMN OBJECTS

(EMBEDDED OBJECTS).

Inserting Values

Every object type has a system-defined constructor method, that is, a method that makes a

new object according to the object type’s specification. The name of the constructor method is

the name of the object type. The constructor method is a function. It returns the new object as

its value. It is used to initialize the attributes with values.

Example

Data inserted into the table EMPLOYEE_data using CONSTRUCTOR METHOD

INSERT INTO employee _data VALUES (101, user_name ('Sachin', 'Ramesh’,’Tendulkar'

) , user_date(04,05,98),10000)) ;

The possible queries that can be performed are :

To retrieve all the records from the table

SELECT * FROM employee_data;

SELECT e.ename.fname, e.ename.lname FROM employee_data e;

SELECT e.empno, e.dob.day FROM employee_data e;

RDBMS Concepts and Oracle 8i

356

Collection Datatypes

 Collection datatypes can hold multiple records. They are of two types:

• VARRAY (Varying Array)

• NESTED TABLE (Multiple records)

Varray

An array is an ordered set of data elements. All elements of a given array are of the same

datatype. Each element has an index, which is a number corresponding to the element's

position in the array. The number of elements in an array is the size of the array. Oracle

arrays are of variable size, which is why they are called VARRAYs. The maximum size must

be specified while creating varrays.

Declaring a Varray does not occupy space. It defines a type, which can be used as

• The datatype of a column of a relational table.

• An object type attribute.

• A PL/SQL variable, parameter, or function return type.

An array object is stored in line, that is, in the same tablespace as the other data in its row.

The following example illustrates this concept.

Example

CREATE OR REPLACE TYPE price_list AS VARRAY(5) OF number(9) ;

CREATE TABLE prods

(

 pno number,

 rate price_list

) ;

 Inserting Values

RDBMS Concepts and Oracle 8i

357

Inserting records are always done only using Constructor method.

INSERT INTO prods VALUES

(1, price_list (12,34,56,78));

INSERT INTO prods VALUES

(2, price_list (12,34,56));

Here the maximum values that can be specified are only 5. The number of values that the

column can hold must be less than or equal to 5. On exceeding this maximum value, the

insertion leads to the following error:

INSERT INTO prods VALUES

(4, price_list (12,3,5,6,71,90));

ERROR at line 2:

ORA-22909: exceeded maximum VARRAY limit

 Querying the data from varrays:

Data can be selected as a complete list from the table containing varrays. Individual

manipulation cannot be done in SQL. Also, while performing updation, even if one single

value has to be updated the whole collection has to be specified.

Example given below shows how to select and update records.

While issuing SELECT statement,

SELECT * FROM prods;

Displays,

PNO

RATE

 2

RDBMS Concepts and Oracle 8i

358

PRICE_LIST(12, 34, 56)

 1

PRICE_LIST(12, 34, 56, 78)

Selecting can be done only as a collection unit.

Nested Tables

A nested table is like an object table without the object identifiers. It has a single column, and

the type of that column is a built-in type or an object type. If it is an object type, the table can

also be viewed as a multi-column table, with a column for each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can use

• The datatype of a column of a relational table.

• An object type attribute.

When a nested table appears as the type of a column in a relational table or as an attribute of

the underlying object type of an object table, Oracle stores all of the nested table data in a

single table, which it associates with the enclosing relational or object table. They are also

called Multiple Row Object Type. There are no restrictions on the number of records to be

created.

Example

The following example creates a nested table and embeds the type with the relational table.

MULTIPLE ROW OBJECT TYPE(NESTED TABLE)

CREATE OR REPLACE TYPE stud_type AS

OBJECT

(

 studno number,

 studname char(20),

 sex char(1)

) ;

RDBMS Concepts and Oracle 8i

359

CREATE OR REPLACE TYPE stud_nt AS TABLE OF stud_type ;

CREATE TABLE faculty

(

 factno number,

 name varchar2(30),

 students STUD_NT

) NESTED TABLE students STORE AS stud_nt_tab ;

Here , NESTED TABLE nested_item STORE AS storage_table

specifies storage_table as the name of the storage table in which the rows of all nested_item

values reside. This clause must be included when creating a table with columns or column

attributes whose type is a nested table. The nested_item is the name of a column or a column-

qualified attribute whose type is a nested table.

The storage_table is the name of the storage table. The storage table is created in the same

schema and the same tablespace as the parent table.

Creating a table with columns of type TABLE implicitly creates a storage table for each nested

table column. The storage table is created in the same tablespace as its parent table (using the

default storage characteristics) and stores the nested table values of the column for which it is

created. You cannot query or perform DML statements on the storage table directly, but you

can modify the nested table column storage characteristics by using the name of storage table

in an ALTER TABLE statement .

 INSERT INTO faculty VALUES

 (1, 'Ramesh' ,

 stud_nt (

 stud_type(10, 'Rajesh', 'M') ,

 stud_type(11, 'Suresh', 'M'),

 stud_type(12, 'Uma', 'F')

)

) ;

Insertion into the table is done using the abstract data type called stud_type. Similarly

multiple records can be inserted into the table.

RDBMS Concepts and Oracle 8i

360

While querying, individual columns can be selected.

If,

SELECT * FROM faculty is issued ,

The display will be,

FACTNO NAME

--------- ------------------------------

STUDENTS(STUDNO, STUDNAME, SEX)

--

 1 Ramesh

STUD_NT(STUD_TYPE(10,'Rajesh','M'),STUD_TYPE(11,'Suresh‘,'M'),ST

_TYPE(12,'Uma','F'))

Likewise, multiple records can be inserted.

Using Flattened Subqueries

To manipulate the individual rows of a nested table stored in a database column, use the

keyword THE. THE keyword must be prefixed to a subquery that returns a single column

value or an expression that yields a nested table. If the subquery returns more than a single

column value, a runtime error occurs. Because the value is a nested table, not a scalar value,

Oracle must be informed, which is what THE does.

QUERING NESTED TABLE Values alone (Built-in Function Used : THE)

SELECT nt.studno, nt.studname, nt.sex FROM

 THE (SELECT students FROM faculty WHERE

 factno = 1) nt ;

Note, here only one main subset value can be selected.

The display of the above query will be,

RDBMS Concepts and Oracle 8i

361

STUDNO STUDNAME S

----- ------------ -

 10 Rajesh M

 11 Suresh M

 12 Uma F

Here, if a user needs to enter another record, this can be done using the following syntax:

INSERT INTO THE (SELECT students FROM faculty

 WHERE factno=1) nt

 VALUES (13, 'Hema', 'F') ;

1 row gets created. If the previous query is issued, the display changes to,

STUDNO STUDNAME S

--------- ---------------- -

 10 Rajesh M

 11 Suresh M

 12 Uma F

 13 Hema F

In the case of Nested table, a particular column value can be inserted using,

 INSERT INTO THE (SELECT students FROM faculty

 WHERE factno=1) nt

 (Nt.studname) VALUES (‘Badri’) ;

 The output of the query after insert is ,

SELECT nt.studno, nt.studname, nt.sex FROM

THE (SELECT students FROM faculty WHERE

 factno = 1) nt ;

STUDNO STUDNAME S

--------- -------------------- -

 10 Rajesh M

RDBMS Concepts and Oracle 8i

362

 11 Suresh M

 12 Uma F

 13 Hema F

 Badri

Data in the Relational table can be inserted into the Nested table using the function called

CAST. CAST along with MULTISET operator, converts the relational record to a nested table

record.

INSERT INTO faculty VALUES

 (2,‘Geetha’,

 CAST(MULTISET (SELECT * FROM THE (SELECT

 Students FROM faculty WHERE factno = 1))

 AS stud_nt)

);

The display when all the records are selected will be,

FACTNO NAME

--------- -----------------------------

STUDENTS(STUDNO, STUDNAME, SEX)

 1 Ramesh

STUD_NT(STUD_TYPE(10,'Rajesh','M'), STUD_TYPE(11,'Suresh','M'),ST

_TYPE(12,'Uma','F'),STUD_TYPE(13, 'Hema ', 'F'), STUD_TYPE(NULL

'Badri ', NULL), STUD_TYPE(NULL, 'Badri ', NULL))

 2 Geetha

STUD_NT(STUD_TYPE(10, 'Rajes ', 'M'), STUD_TYPE(11, 'Suresh ', 'M'),

ST_TYPE(12, 'Uma ', 'F'), STUD_TYPE(13, 'Hema ', 'F'), STUD_TYPE(NULL

'Badri ', NULL), STUD_TYPE(NULL, 'Badri ', NULL))

Updating a particular column in a subset:

Updating records can be done using the UPDATE and THE statement. The following

example is illustrative of this:

RDBMS Concepts and Oracle 8i

363

UPDATE THE (SELECT students FROM faculty WHERE factno=1) nt

 SET nt.studname = ‘Modified’

WHERE nt.studno = 11 and nt.sex = ‘M’ ;

Updates the record in the faculty 1 and under that, the student 11 is updated.

Deleting Individual Records

Deletion can be done in two ways. Either the whole record gets deleted or the corresponding

record in the subset can be deleted.

DELETE FROM THE (SELECT students FROM faculty WHERE factno = 1)nt

 WHERE nt.studno=11

This deletes the record corresponding to student 11 for the faculty number 1.

Describing Individual types

DESC keyword like describing other tables is used to DESCRIBE any object type.

The following points describe the differences between Nested Table and Varrays:

• Nested tables are also singly dimensioned, unbounded collections of homogenous

elements. They are initially dense but can become sparse through deletions. Nested tables

are available in both PL/SQL and the database (for example, as a column in a table).

• VARRAYs, like the other two collection types, are also singly dimensioned collections of

homogenous elements. However, they are always bounded and never sparse. Like nested

tables, they can be used in PL/SQL and in the database. Unlike nested tables, when you

store and retrieve a VARRAY, its element order is preserved.

Using a nested table or VARRAY, you can store and retrieve non-atomic data in a single

column. For example, the employee table used by the HR department could store the date

of birth for each employee’s dependents in a single column.

RDBMS Concepts and Oracle 8i

364

Row Objects and Column Objects

Objects that appear in object tables are called row objects. Objects that appear only in table

columns or as attributes of other objects are called column objects.

Embedded and non Embedded Objects

An embedded object is one that is completely contained within another. A column object is

one that is represented as a column in a table. To take advantage of OO capabilities, a

database must also support ROW OBJECTS – Objects that are represented as rows instead of

columns. The row objects are not embedded Objects; instead, they are referenced objects,

accessible via references from other objects.

Object Tables And OID (ROW OBJECTS)

An object table is a special kind of table that holds objects and provides a relational view of

the attributes of those objects. In an object table, each row is a row object. Each row within the

object table has an OID – an Object Identifier value – assigned by Oracle when the row is

created. An OID is an identifier for a row object. Other objects within the database can

reference the rows of an object table.

Example

CREATE OR REPLACE TYPE deptype AS OBJECT

(

depno NUMBER,

dname VARCHAR2(20),

loc VARCHAR2(20)

);

This is a simple object type. To create a table out of this object type, the following syntax must

be used.

Syntax:

RDBMS Concepts and Oracle 8i

365

 CREATE TABLE <tablename> OF <typename>;

The example given below shows this better.

To create an object table of the DEPTYPE datatype,

 CREATE TABLE deptab OF deptype;

Oracle allows you to view this table in two ways:

• A single column table in which each entry is an deptype object.

• A multi-column table in which each of the attributes of the object type deptype, namely

depno,dname, and loc occupies a column.

Inserting Records to Object Tables.

Inserting records onto object tables can be done in two ways: either by using the constructor

method or by a normal insertion. The following example inserts records in both ways:

1. Insertion using Constructor Method

 INSERT INTO deptab VALUES(deptype(10,’sales’,’chennai’));

2. A Relational way of Insertion

 INSERT INTO deptab VALUES (20,’Purchase’,’Bangalore’);

Selecting Records

After the records are inserted, selecting can be done in a normal way as how other table

records are queried. When records are selected from the table, the output will be:

SELECT * FROM deptab;

 DEPNO DNAME LOC

 --------- -------------------- --------------------

 10 sales chennai

 20 Purchase Bangalore

In an object table, each row is a row object. An object table differs from a normal relational

table in the following ways :

RDBMS Concepts and Oracle 8i

366

• Each row within the object table has an OID – an object identifier value – assigned by

ORACLE when the row is created. An OID is an identifier for a row object.

• Other objects within the database can reference the rows of an object table.

If the object table is based on an abstract datatype that uses no other abstract datatype, then

the object table would behave as if it were a relational table. In the above example, the

deptype datatype does not use any other abstract datatype for any of its columns, so the

deptab object table behaves as if deptab were a relational table.

 Object Identifiers (OIDS)

Oracle8’s object identifiers (OIDs) are essentially the reincarnation of the pointer construct.

ROWIDs are used by conventional tables and can change during the life span of that table.

OIDs are used only by object tables, and they do not change or repeat.

An OID is a 128-byte base-64 number generated internally by the Oracle engine. OIDs are

never reused once they are discarded. Oracle guarentees that OIDs are globally unique, even

across a distributed system. OIDs are created implicitly whenever an object table is created.

REFs

In the relational model, foreign keys express many—to—one relationship. Oracle with the

objects option provides a more efficient means of expressing many-to-one relationships when

the “one” side of the relationship is a row object. Oracle gives every row object a unique,

immutable identifier, called an OBJECT IDENTIFIER. REFs only describe a relationship in

one direction.

Ref and Deref Constructs

The OID contains no actual data but merely “points” to the object table.An object identifier

(OID) allows the corresponding object to be referred to from other objects or from relational

tables. A built-in datatype called REF represents such references. A REF is a container for an

object identifier. REFs are pointers to objects. The only operation Oracle allows on a REF is to

replace its contents with a reference to a different object. A REF encapsulates a reference to a

row object of a specified object type.

RDBMS Concepts and Oracle 8i

367

A table can have top-level REF columns or it can have REF attributes embedded within an object column. Tables can

have a combination of REF columns and REF attributes, each referencing a different object table.

Example

Consider the deptab object table created using the deptype abstract datatype :

 CREATE TABLE EMPLOYEES

 (

EMPNO NUMBER,

ename VARCHAR2(20),

deptno REF deptype);

In the above example, DEPTNO column references data that is stored elsewhere. The REF

operator points the DEPTNO column to the DEPTYPE datatype.

INSERT INTO EMPLOYEES SELECT 1,’Kalyani’,REF(X) FROM DEPTAB X

 WHERE depno=10;

The deptno column contains the reference to the row object, not the value of the data stored

in the row object.

The REF operator takes a row object as its argument and returns a reference value. The

DEREF operator performs the opposite function – it takes a Reference value and returns the

value of the row objects. The DEREF operator takes as its argument the OID generated for a

reference.

In the above example , the reference OID can be seen by quering EMPLOYEES table.

 SELECT * FROM EMPLOYEES;

Displays,

EMPNO ENAME DEPTNO

----------- -------------------- --------------------

1 Kalyani

RDBMS Concepts and Oracle 8i

368

00002202087867EC0FCE3511D4BDBA008048DB6C207867EC0ECE3511D4BDBA008048DB6C2

0

The deptno column contains the reference to the row object, not the value of the data stored

in the row object . The DEREF operator will take the OID from deptno column and find the

referenced object; the operator will evaluate the reference and return the values to the user.

To display the row object the deptno column in the EMPLOYEES table refers use:

 SELECT DEREF(K.deptno) FROM employees K

 WHERE ename = ‘Kalyani’ ;

DEREF(K.DEPTNO)(DEPNO, DNAME, LOC)

DEPTYPE(10, 'sales', 'chennai')

To display selective information from the rowobject the deptno column in the EMPLOYEES

table refers

SELECT k.ENAME,k.DEPTNO.DNAME FROM EMPLOYEES K ;

This would display,

ENAME DEPTNO.DNAME

--------------- ------------------

Kalyani sales

In general, if a table has a REF column, each REF value in the column could reference a row in

a different object table. Refs can be of different types as given below:

SCOPED REFs

In declaring a column type, collection element, or object type attribute to be a REF, you can

constraint it to contain only references to a specified object table. Such a REF is called a

SCOPED REF. SCOPED REFs require less storage space and allow more efficient access than

UNSCOPED REFs.

 A SCOPE clause restricts the scope of references to a single table. A scoped reference is used

when the intention is to limit the reference to a particular table. If the SCOPE option is

RDBMS Concepts and Oracle 8i

369

selected when a table is created, then all further instances of data in the table must reference

the scoped table.

Example

 CREATE TABLE EMPLOYEES

 (

 ENAME VARCHAR2(20),

 DEPTINF REF DEPTYPE SCOPE IS DEPTAB

) ;

The above example indicates that the values must be obtained from the object table DEPTAB,

which is described as a type of DEPTYPE. Utilizing the SCOPE clause reduces space

requirements and speeds access because the target table is isolated.

The REF values can be stored with or without ROWIDs. Storing REF values with ROWID can

enhance the performance of the dereference operation but takes up more space.

EXAMPLE : (REF WITH ROWID)

CREATE TABLE employees

 (

ename varchar2(20), deptinf REF deptype SCOPE IS deptab WITH ROWID

) ;

 OR

CREATE TABLE employees
(

ename varchar2(20), deptinf REF deptype SCOPE IS deptab,

REF(deptinf) WITH ROWID

) ;

The default behavior is to store REF values without the ROWID.

When records are inserted the scope is checked for and if the scope is violated, an error is

displayed as shown below:

CREATE TABLE deptab1 OF deptype;

RDBMS Concepts and Oracle 8i

370

Table created.

insert into deptab1 values(12,'fin','chennai');

1 row created.

INSERT INTO employees SELECT 'hema',ref(x) FROM deptab1 x where depno=10;

insert into employees select 'hema',ref(x) from deptab1 x where depno=10

 *

ERROR at line 1:

ORA-22889: REF value does not point to scoped table

In the case of any restriction, this scope checks for the table.

 DANGLING REFs

When a REF value points to a non-existent object, the REF is said to be DANGLING.

DANGLING is different from being NULL. This is because it is possible for the object

identified by a REF to become unavailable – either through deletion of the object or a change

in privileges. Such a REF is called DANGLING REF. To check to see if a REF is dangling or

not, Oracle SQL provides the predicate IS [NOT] DANGLING.

Example

A Record in the table deptab is deleted. If any records are further referred, dangling can be

checked.

INSERT INTO EMPLOYEES SELECT 'Sriram',REF(X) FROM DEPTAB X

 WHERE depno=20;

1 row created.

DELETE FROM deptab where depno=20;

SELECT k.ename, k.deptinf.dname

FROM EMPLOYEES k WHERE k.DEPTinf IS NOT DANGLING ;

RDBMS Concepts and Oracle 8i

371

ENAME DEPTINF.DNAME

-------------------- --------------------

Sriram Purchase

DEREFERENCING REFs

Accessing the object referred to by a REF is called DEREFERENCING the REF. Oracle

provides the DEREF operator to do this. Dereferencing a Dangling REF results in a null

object.

RECURSION

RECURSION is the condition where an entity has a relationship to itself. It is also referred to

as SELF – ASSOCIATION .

Example

 CREATE TYPE EMPLOYEE AS OBJECT

 (

 EMPNO NUMBER,

 ENAME VARCHAR2(20),

 JOB VARCHAR2(20),

 MGR REF EMPLOYEE,

 SAL NUMBER(10,2),

);

To create an object table EMP of type EMPLOYEE with PRIMARY KEY constraint on the

EMPNO attribute and to place a SCOPE on the REFs in the MGR column.

 CREATE TABLE EMP OF EMPLOYEE

(

EMPNO PRIMARY KEY

);

ALTER TABLE EMP ADD (SCOPE FOR (MGR) IS EMP);

 OR

 CREATE TABLE EMP OF EMPLOYEE ;

 ALTER TABLE EMP ADD PRIMARY KEY(EMPNO);

 ALTER TABLE EMP ADD(SCOPE FOR (MGR) IS EMP);

RDBMS Concepts and Oracle 8i

372

 INSERT INTO EMP VALUES (1000,’LAN’,’PRESIDENT’,NULL,15000);

 INSERT INTO EMP SELECT

 2000,’PARTHA’,’MANAGER’,REF(E),7000

FROM EMP E WHERE E.EMPNO=1000 ;

Oracle provides implicit dereferencing of REFs .

Example

To display the employee details along with the information of their manager :

 SELECT e.empno,e.ename,e.job,deref(e.mgr),e.sal

 FROM EMP e WHERE e.mgr IS NOT DANGLING;

 To display the employees name and his manager name :

SELECT e.ename,e.mgr.ename FROM EMP e WHERE e.mgr IS NOT DANGLING ;

19.6 Object Views

Although Oracle’s object extensions offer rich possibilities for design of new systems, few

Oracle shops with large relational databases in place will want or be able to completely re-

engineer those systems to use objects. In order to allow established applications to take

advantage of these new features over time, Oracle8 provides object views. With object views,

you can achieve the following benefits:

Efficiency of object access. In PL/SQL, and particularly in Oracle Call Interface (OCI)

applications, object programming constructs provide for convenient retrieval, caching, and

updating of object data. These programming facilities can provide performance

improvements, with the added benefit that application code can be more succinct.

Ability to navigate using REFs. By designating unique identifiers as the basis of an object

identifier (OID), you can reap the benefits of object navigation. or example, you can retrieve

attributes from related "virtual objects" using dot notation rather than explicit joins.

RDBMS Concepts and Oracle 8i

373

Easier schema evolution. In early versions of Oracle8, a pure object approach renders almost

any kind of schema change at best ugly. In contrast, object views offer more ways that you

can change both table structure and object type definitions of an existing system.

Consistency with new object-based applications. If you need to extend the design of a legacy

database, the new components can be implemented in object tables; new object-oriented

applications requiring access to existing data can employ a consistent programming model.

Legacy applications can continue to work without modification.

Other new features of Oracle can improve the expressiveness of any type of view, not just

object views. Two features which are not strictly limited to object views are collections and

"INSTEAD OF" triggers. Consider two relational tables with a simple master-detail

relationship. Using the Oracle objects option, you can portray the detail records as a single

non-scalar attribute (collection) of the master, which could be a very useful abstraction. In

addition, using INSTEAD OF triggers, you can tell Oracle exactly how to perform inserts,

updates, and deletes on any view. These two features are available to both object views and

non-object views.

Object View Example

In this example, we look at how object views might be used at a fictitious firm that designs

web sites. Their existing relational application tracks JPEG, GIF, and other images that they

use when designing client web sites. These images are stored in files, but data about them are

stored in relational tables. To help the graphic artists in locating the right image, each image

has one or more associated keywords, stored in a straightforward master-detail relationship.
CREATE TABLE images (

 image_id INTEGER NOT NULL,

 file_name VARCHAR2(512),

 file_type VARCHAR2(12),

 bytes INTEGER,

 CONSTRAINT image_pk PRIMARY KEY (image_id));

...and one table for the keywords associated with the images:

CREATE TABLE keywords (

 image_id INTEGER NOT NULL,

 keyword VARCHAR2(45) NOT NULL,

 CONSTRAINT keywords_pk PRIMARY KEY (image_id, keyword),

 CONSTRAINT keywords_for_image FOREIGN KEY (image_id)

RDBMS Concepts and Oracle 8i

374

 REFERENCES images (image_id));

To create a more useful abstraction, we’ve decided to logically merge these two tables into a

single object view. In order to do so, we must first create an object type with appropriate

attributes. Since there are usually only a few keywords for a given image, this relationship

lends itself to using an Oracle collection to hold the keywords.

Before we can create the top-level type, we will first define a collection to hold the keywords.

CREATE TYPE Keyword_tab_t AS TABLE OF VARCHAR2(45);

From here, it’s a simple matter to define the object type. To keep the example short, we’ll

define only a couple of methods. In the following object type specification, notice that the

keywords attribute is defined on the Keyword_tab_t collection type.

CREATE TYPE Image_t AS OBJECT (

 image_id INTEGER,

 file_name VARCHAR2(512),

 file_type VARCHAR2(12),

 bytes INTEGER,

 keywords Keyword_tab_t,

 MEMBER FUNCTION set_attrs (new_file_name IN VARCHAR2,

 new_file_type IN VARCHAR2, new_bytes IN INTEGER)

 RETURN Image_t,

MEMBER FUNCTION set_keywords (new_keywords IN Keyword_tab_t)

 RETURN Image_t,

 PRAGMA RESTRICT_REFERENCES (DEFAULT, RNDS, WNDS, RNPS, WNPS)

);

Here is the body:

CREATE TYPE BODY Image_t

AS

 MEMBER FUNCTION set_attrs (new_file_name IN VARCHAR2,

 new_file_type IN VARCHAR2, new_bytes IN INTEGER)

 RETURN Image_t

 IS

 image_holder Image_t := SELF;

RDBMS Concepts and Oracle 8i

375

 BEGIN

 image_holder.file_name := new_file_name;

 image_holder.file_type := new_file_type;

 image_holder.bytes := new_bytes;

 RETURN image_holder;

 END;

 MEMBER FUNCTION set_keywords (new_keywords IN Keyword_tab_t)

 RETURN Image_t

 IS

 image_holder Image_t := SELF;
 BEGIN

 image_holder.keywords := new_keywords;

 RETURN image_holder;

 END;

END;

At this point there is no connection between the relational tables and the object type. They are

independent organisms. It is when we build the object view that we "overlay" the object

definition onto the tables.

Finally, to create the object view, we use the following statement:
CREATE VIEW images_v

 OF Image_t

 WITH OBJECT OID (image_id)

AS

 SELECT i.image_id, i.file_name, i.file_type, i.bytes,

 CAST (MULTISET (SELECT keyword

 FROM keywords k

 WHERE k.image_id = i.image_id)

 AS Keyword_tab_t)

 FROM images i;

 Differences Between Object Views and Object Tables

RDBMS Concepts and Oracle 8i

376

In addition to the obvious difference between a view and a table, more subtle differences exist

between an object view and an object table. Areas of difference include:

• Uniqueness of object identifiers. Whereas object tables always have unique OIDs, it is

possible to create object views which ccntain duplicate virtual OIDs. Object views may

also duplicate the OIDs of other object views or object tables.

• Use of REFs. As with an object table, it is possible to use a REF to point to an instance of

an object view. However, these REFs must be constructed from foreign keys with the

special built-in MAKE_REF, which turns out to be a rather finicky function. In particular,

if your foreign key value is null, MAKE_REF returns an error!

• Storage of REFs. Object tables can store REF values persistently, but REFs to virtual

objects in an object view must be constructed dynamically (with MAKE_REF).

• REFs to Non-Unique OIDs. It is impossible in an object table to have a REF to a non-

unique OID; but an object view which has such a REF may have this problem. You have

to consider it and deal with it if necessary.

 Strategies for Object Views

Here are some of the things that should guide your thinking about object views:

Because of their ability to tolerate schema changes, object views can provide advantages over

conventional objects. What is unclear is the degree of performance impact they may cause

(when compared against object tables).

Unless you have a very good reason to do otherwise, define the OID of an object view to be a

unique value.

Adopt a consistent approach in the localization of DML on object views. INSTEAD OF

triggers are cool, but triggers can exhibit confusing interactions with each other. Packages

may still be the optimal construct in which to define insert, update, and delete logic.

RDBMS Concepts and Oracle 8i

377

19.7 Member Functions

When dealing with numbers, common convention dictates that the number with the larger

value is greater than the other. But when objects are compared, the attributes based on the

comparison may not be determined. In order to compare objects, Oracle allows declaring two

types of member functions called MAP and ORDER.

MAP

Map Function is used to specify a single numeric value that is used to compare two objects of

the same type. The greater than or less than or equality is based on this value.

ORDER

Order Function is used to write the specific code in order to compare two objects and the

return value indicates the equality or greater or lesser comparisons.

Using Map Method

MAP method is used to provide an alternative way to specify comparison semantics of the

object type.

A MAP function enables to compute a singular scalar value, based on one or more of the

object’s attributes, which is then used to compare the object in question to other objects of the

same type. Map functions require no parameter because they return a value representing only

the object whose MAP method is invoked. The result of the MAP method can be one of the

following types:

• NUMBER

• DATE

• VARCHAR2

19.8 Using ORDER method

ORDER method is used to compare the object values and return values such as 1 indicates

that the current object is greater than the parameter , 0 indicates equality and –1 if the current

object is less than the argument.

RDBMS Concepts and Oracle 8i

378

Note: Whenever Member Functions are used there needs to be specified a Restrict_References needs to be specified.

Either an ORDER or MAP function alone needs to be specified.

The Object Types contain 2 parts like packages namely Specification and Body. Body is a

must only when any member function is specified.

If an object type is created without any member function comparison cannot be performed as

the following example illustrates:

select empno,ename,a.sal from emptab a;

 EMPNO ENAME

--------- --------------------

SAL(BASIC, DA)

 1 hema

SALTYPE(1000, 2300)

 2 magesh

SALTYPE(10000, 20000

select a.empno,a.ename,a.sal from emptab a,emptab b

where a.sal >=b.sal;

where a.sal >=b.sal

 *

ERROR at line 2:

ORA-22950: cannot ORDER objects without MAP or ORDER method In order to do this

operation write a function called compare which compares the two objects.

CREATE OR REPLACE TYPE deptype AS Object

(deptno number,dname varchar2(20)

Order Member Function compare(dtype In deptype) Return Number);

Create or replace type body deptype as order member function compare (dtype in deptype)

return number is if self.deptno > dtype.deptno then

 return 1;

 else

 return 0;

end if;

end;

This allows the above query to be executed.

RDBMS Concepts and Oracle 8i

379

19.9 Short Summary

 Oracle 8 implements the object oriented concepts to exhibit real world objects. They are

implemented as datatypes(abstract datattypes).

 Abstract datatypes are embedded as datatypes to a column in a relational table.

 Collection datatypes hold multiple data items. They can be:

• Varrays (Varying Size Arrays)

• Nested Tables

 Object tables are used to establish a master-child relationship between objects.

 Member Functions implement the behaviour of an object. The Member Functions can be

either Map or Order Member Functions.

 Object Views provide efficiency of access, consistency with new object based applications.

19.10 Brain Storm

1. What is Object Constructor?

2. What is Atomic Null Violation Error?

3. What is Row Object and Column Object?

4. What is the clause used in insert statement to return the object reference?

5. What are the advantages of Object tables?

6. How do define Dangling Reference?

7. Objects can be compared only for equality – True or False?

8. Methods can be added to an object type using
Alter type <typename> replace as object (------------);

9. Object type methods can be overloaded – True or False?

10. Explain Map and Order Member Function?

11. What are scoped Reference and Unscoped Reference?

RDBMS Concepts and Oracle8i

380

Lecture 20

Introduction to DBA

Objectives

After completing this lesson, you should be able to do the following

 Discuss about the Database administrator

 Discuss about the responsibilities of DBA

 Describe about the roles of DBA

 Understand about cursor and it use

 Understand about the parse and create one simple program

RDBMS Concepts and Oracle8i

381

Coverage Plan

Lecture 20

20.1 Snap shot

20.2 Introduction to DBA

20.3 Open curser

20.4 Execute

20.5 Oracle DBA

20.6 Short summary

20.7 Brain Storm

RDBMS Concepts and Oracle8i

382

15.1 Snap Shot

This chapter introduces the concept of Dynamic SQL along with roles and responsibilities of a

Database administrator.

• Dynamic SQL introduction

• Writing a simple program

• Roles and responsibilities of a DBA

15.2 Introduction to DBA

Before a PL/SQL program can be executed, it must be compiled. The PL/SQL compiler

resolves references to Oracle schema objects by looking up their definitions in the data

dictionary. Then, the compiler assigns storage addresses to program variables that will hold

Oracle data so that Oracle can look up the addresses at run time. This process is called

binding.

How a database language implements binding affects runtime efficiency and flexibility.

Binding at compile time, called static or early binding, increases efficiency because the

definitions of schema objects are looked up then, not at run time. On the other hand, binding

at run time, called dynamic or late binding, increases flexibility because the definitions of

schema objects can remain unknown until then.

Designed primarily for high-speed transaction processing, PL/SQL increases efficiency by

bundling SQL statements and avoiding runtime compilation. Unlike SQL, which is compiled

and executed statement-by-statement at run time (late binding), PL/SQL is processed into

machine-readable p-code at compile time (early binding). At run time, the PL/SQL engine

simply executes the p-code.

Overcoming the Limitations

However, the package DBMS_SQL, which is supplied with Oracle, allows PL/SQL to execute

SQL data definition and data manipulation statements dynamically at run time.

RDBMS Concepts and Oracle8i

383

20.3 Open_Cursor

To process a SQL statement, you must have an open cursor. When you call the

OPEN_CURSOR function, you receive a cursor ID number for the data structure representing

a valid cursor maintained by Oracle.

Parse

Every SQL statement must be parsed by calling the PARSE procedure. Parsing the statement

checks the statement's syntax and associates it with the cursor in your program

You can parse any data manipulation language or data definition language statements. Data

definition language statements are executed on the parse, which performs the implied

commit.

20.4 Execute

Call the EXECUTE function to execute your SQL statement.

CLOSE_CURSOR

When you no longer need a cursor for a session, close the cursor by calling CLOSE_CURSOR.

Example 14.1

DECLARE

 curid NUMBER;

 str VARCHAR2(200);

 exeid NUMBER;

tabname varchar2(20):='&a';

BEGIN

 curid:=DBMS_SQL.OPEN_CURSOR;

 str := 'DROP TABLE '||tabname;

DBMS_SQL.PARSE(curid,str,dbms_sql.native);

exeid :=DBMS_SQL.EXECUTE (curid);

DBMS_SQL.CLOSE_CURSOR(curid);

END;

RDBMS Concepts and Oracle8i

384

This block accepts the tablename and drops the table name.

20.5 Oracle DBA

Because an ORACLE database system can be quite large and have many users, someone or

some group of people must manage this system. The database administrator (or DBA) is this

manager.

Every database requires at least one person to perform administrative duties; if a database is

large, these administrative duties can be divided among multiple administrators.

DBA’s Roles

As a database administrator, your responsibilities can include:

• installing and upgrading the ORACLE Server and application tools

• allocating system storage and planning future storage requirements for the database

system

• creating primary database storage structures (tablespaces) once application developers

have designed an application

• creating primary objects (tables, views, indexes) once application developers have

designed an application

• modifying the database structure, as necessary, from information given by application

developers

• enrolling users and maintaining system security

• ensuring compliance with your ORACLE license agreement

• controlling and monitoring user access to the database

• monitoring and optimizing the performance of the database

• planning for backup and recovery of database information

• maintaining archived data on tape

• backing up and restoring the database

• contacting Oracle Corporation for technical support

RDBMS Concepts and Oracle8i

385

To accomplish administrative tasks in ORACLE, you need extra privileges both within the

database and possibly in the operating system of the server on which the database runs. This

section describes the privileges you need and database security facilities of which you should

be aware.

Note: Access to a database administrator's account should be tightly controlled.

20.6 Short Summary

 Database language implements binding affects runtime efficiency and flexibility. Binding

at compile time, called static or early binding.

 Every SQL statement must be parsed by calling the PARSE procedure. Parsing the

statement checks the statement's syntax and associates it with the cursor in your

program.

 Responsibilities of DBA Installing, allocating, creating, modifying, enrolling, ensuring,

controlling, monitoring, planning, maintaining, backing, contacting.

20.7 Brain Storm

1. Explain the roles of DBA.

2. Explain about open cursor.

3. What is parse?

RDBMS Concepts and Oracle 8i

386

Lecture 21

Java Strategies

Objectives

After completing this lesson, you should be able to do the following

 Discuss about Java strategies

 Describe JDBC

 Describe Java with SQL

 Discuss about Java Virtual Machine

 Describe about Java stored procedures

RDBMS Concepts and Oracle 8i

387

Coverage Plan

Lecture 21

21.1 Snap shot

21.2 Java strategy

21.3 JDBC

21.4 Java with SQL

21.5 Java virtual machine

21.6 Java stored procedures

21.7 Short summary

21.8 Brain Storm

RDBMS Concepts and Oracle 8i

388

21.1 Snap Shot

Oracle recognizes Java as a very powerful language that's quickly gaining acceptance in the

development community for deploying enterprise applications. Several important

characteristics of Java contribute to its success:

• It's an object-oriented language.

• It uses an open standard for application development.

• It uses JavaBeans and Enterprise JavaBeans (EJB), which can improve productivity by

allowing code, reuse.

• It enables you to develop portable applications.

• It can execute in browsers, application servers, and databases. Thus, developers can write

applications by using just one language. It's widely accepted as the language to develop

Internet applications.

 In this hour, you will

 Understand the Java Virtual Machine

 Create and use Java stored procedures

 Understand the Internet file system

 Understand Enterprise JavaBeans

21.2 Oracle's Java Strategy

Java is a key component to Oracle’s strategy of network computer models that will ultimately

result in a low cost of ownership. Oracle has implemented Java into Oracle8I with two major

approaches:

 Providing an enterprise-class Java sever platform with fast access and manipulation for

online transaction processing systems and decision support systems, support for a large

number of concurrent users, high availability and fast failover, integration with system

RDBMS Concepts and Oracle 8i

389

management tools such as Oracle Enterprise Manager, and integration of a Java Virtual

Machine (JVM).

 Providing a set of Java tools that can be used to quickly develop efficient Java

applications: JDBC drivers that provide database connectivity from Java; an SQLJ

translator, which allows the use of embedded SQL in Java; Jdev3elope, which allows the

development of Java programs and integrates JDBC and the SQLJ translator into a

complete development environment: CORBA connectivity; Oracle Application Server, the

ability to create and load Java stored procedures and triggers; and component-oriented

development, supported with the use of JavaBeans and EJB.

21.3 JDBC

Using Java database Connectivity (JDBC)

JDBC is a standard set of classes that allow application developers to access and manipulate

relational databases from within Java programs. JDBC supports SQL 92 syntax and allows

vendors to provide extensions to improve performance.

JDBC Drivers provided by Oracle

Oracle provides two types of JDBC drivers, which you can use for different types of

applications.

This JDBC driver Written completely in Java, this is ideal for java applets that can be used

with a browser. The thin driver is only 300 kb and can be downloaded. When the applet is

fired, the thin driver establishes a direct Net8 connection between the applet and the Oracle

database. Scalability is achieved by the use of the Net8 Connection Manager, which should

reside on the same host as the Web server. The Connection Manager multiplexes several

inbound physical connections onto a single database connection, thereby saving server

memory.

JBBC / OCI driver - This provides OCI calls to access the database, using Oracle client

libraries such as OCILIB, CORE, and Net8. These are written in C, so the driver isn't

downloadable. You have to perform client installation of the JDBC / OCI driver. It can be

RDBMS Concepts and Oracle 8i

390

used for client / server Java applications, as well as middle-tier Java applications running in a

Java application server.

Both drivers are JDBC complaint and support Oracle-specific features:

• Support for Oracle7 and Oracle8 object-related data types

• Support for manipulating LOB data

• Performance enhancement features such as array interface, prefetching, and batch SQL

statement execution.

• Access to PL/SQL and Java stores procedures.

• Support for all Oracle character sets.

21.4 Java with SQL

 Embedding SQL in Java with SQLJ

Oracle allows developers to write efficient and compact programs with the use of SQLJ. SQLJ,

built on top of JDBC, allows application developers to embed SQL statements in Java

programs, and to run a preprocessor to translate SQLJ to Java code that makes JDBC calls to

the database by using a JDBC driver from any vendor. SQLJ programs can be developed and

debugged by using Oracle's JDeveloper, which is a standard Java development tool. Because

the SQLJ runtime environment runs on top of the

JDBC driver, it can be deployed by using the same configuration as JDBC programs-namely,

the JDBC/OCI driver with middle-tier applications and the thin JDBC driver for Java applets.

The biggest advantage you gain by using SQLJ is increased productivity and manageability of

Java code by providing the following:

• Code that's significantly compact compared to JDBC

• Strong types queries with the use of typed cursors

RDBMS Concepts and Oracle 8i

391

• Compile-time checking of SQL statements to identify errors at an earlier stage and

quickly debug and deploy applications.

 You can use SQLJ programs by following these generic steps.

1. Write a SQLJ Java program

2. Run the SQLJ program through the SQLJ translator. The translator preprocesses the SQLJ

program and generates standard Java code with JDBC calls.

3. Compile the Java code

4. Run the Java program.

 A Sample JDBC Program

Java.sql.CallableStatement stmt;

Connection conn;

ResultSet res;

/* Declare the objects for a callable statement,

connection, and the result set*/

Conn = DriverManager.getConnection ("jdbc:default");

/* Initialize the connection object with the default connection*/

Stmt = conn. PrepareStatement

("SELECT ename FROM emp WHERE ecity = ? AND deptno = ? *);

/* Inituakuze the connection object with the default connection */

Stmt = conn.prepareStatement

("SELECT ename FROM emp WHERE ecity = ? AND deptno = ?");

/* Prepare the statement to execute */

Stmt.setString (1, city_p);

RDBMS Concepts and Oracle 8i

392

Stmt.setInteger (2,deptno_p);

/* Use positional parameters to set the variables*/

Res = stmt.executeQuery ();

 /* Execute the query and store the results in the result set */

A Sample SQLJ Program

ResultSet res;

/* Define an object to store the result set */

#sql res = (SELECT ename FROM emp

 WHERE ecity = :city_p AND deptno = :deptno_p);

/* Pass the program through the SQLJ translator and execute the program. The result set

is stored in "res" */

Oracle8I offers several features that make it an open and extensible platform for application

development:

 An open protocol CORBA / IIOP

 Java as an open server programming language (in addition to PL/SQL)

 The capability to use data cartridges

 The Internet File System (IFS)

21.5 Java virtual machine

 Understanding the Java Virtual Machine

RDBMS Concepts and Oracle 8i

393

Oracle's Java virtual machine (JVM) is a very important component of the Oracle Java

strategy, providing high performance and scalability while running Java applications.

Oracle's JVM is tightly integrated with the database and runs on the Multi-Threaded Server.

The JVM has several characteristics.

 It supports shared Java byte codes and lightweight Java threads.

 It provides a well-tuned memory manager and garbage collector that optimize the use of

the SGA (40KB per user session) and the operating system's virtual memory manager.

 It allows Java classes to be stored in the database as database library units.

 It provides the NCOMP Java compiler to translate Java byte code to C executables, which

can be run very efficiently.

 It supports standard Java libraries such as Java.lang, Java.io, and Java.util.

 It supports JDBC driver and SQLJ translator approaches

 It provides a CORBA 2.0-compliant ORB (Object Request Broker) that can be used to call

in and out of the database with the CORBA/IIOP protocol.

 It provides utilities to load and unload Java programs into the database.

 It allows you to use Java stored procedures and triggers.

 It's 100% JDK 1.1.6 compliant

 It allows the use of Enterprise JavaBeans (EJB 1.0 complaint) by taking various

approaches: pure java clients, CORBA/IIOP clients, and D/COM clients.

 It provides a standard JDBC driver, which offers the same interfaces as OCI, and thin

JDBC drivers, which allow Java applications to be easily loaded into and used in the

database.

RDBMS Concepts and Oracle 8i

394

 It efficiently uses Oracle Multi-Threaded Server (MTS). The Net8 Connection Manager

also can multiplex CORBA/IIOP connections, in addition to Net8 connections.

 It provides mission-critical high availability and transparent application failover.

 It supports efficient load balancing on SMP and MPP architectures.

 It allows ease of management through the use of Oracle Enterprise Manager. OEM allows

centralized monitoring and management of distributed Oracle8 servers and Java stored

programs, use of standard Oracle utilities such as SQL* Loader, and Export/Import for

Java procedures.

 It allows the use of existing database security mechanisms such as roles and grants for

PL/SQL, as well as Java stored procedures.

 The use of "invoker" rights with PL/SQL and Java stored procedures simplifies security

management.

 It uses security features available through the advanced networking option against Java

procedures.

Using Enterprise JavaBeans and CORBA

EJBs allow the use of a component-based model for implementing Java systems. They can be

completely developed in Java and deployed by using execution containers such as

databased., TP-Monitors (also known as Transaction Processing Monitors), and application

servers. The use of EJBs offers several advantages:

• They use a high level of abstraction, making them simple to program

• They are developed completely in Java.

• They are compatible with CORBA, D/COM, and so on.

• They allow the use of transactional applications as modular components.

RDBMS Concepts and Oracle 8i

395

Oracle8I provides a CORBA 2.0 - complaint ORB, which allows applications to access Java

stores procedures and EJBs through the IIOP protocol. It also allows you to write Java

applications that can call out of the database and communicate with other ORBs through

IIOP. Using CORBA/IIOP with Oracle8I now requires the use of MTS.

The mechanism to use CORBA/IIOP is very simple:

1. Write you Java stored procedures and EJBs.

2. Publish the procedures and EJBs so that they can be accessed as a stored procedure via

Net8 and as a CORBA server.

3. Client applications (CORBA and D/COM) can access the published procedures through

IIOP.

21.6 Java Stored Procedures

You can build applications in Java by using three methods:

• Write Java stored procedures and triggers.

• Implement CORBA serves in the database in Java.

• Execute Enterprise JavaBeans.

Oracle8i lets you write stored procedures by using PL/SQL and Java. Although PL/SQL is

seamless with SQL, using Java provides an open, general-purpose platform to develop and

deploy applications. Java stores procedures can be written efficiently by using SQLJ, which

allows SQL to be embedded in Java code. Java stored procedures can run in different runtime

contexts:

• You can write top-level SQL functions and procedures that allow you to implement

business logic in a manner similar to PL/SQL.

• All types of triggers supported by Oracle can be implemented using Java

• Methods associated with objects can be implemented by using Java, in addition to

PL/SQL or C/C++. The body of an object type also can be implemented as a Java class.

RDBMS Concepts and Oracle 8i

396

Java stored procedures implemented in Oracle8I are standards complaint, which consist of

two main parts:

Part 0 The specification of SQLJ that lets you develop efficient applications by embedding

SQL statements into Java programs.

Part 1 The specification of Java stored procedures that provides standard DDL extensions to

"publish" or register Java programs with SQL so that the Java stored procedure is

callable from SQL. It also provides standard DML extensions to call Java from SQL.

The use of Java stored procedures provides several benefits to OLTP applications:

 Network traffic can be reduced because result sets can be processed on the database

server and only the results are sent across the network. This allows efficient usage of

server resources because transfer of large quantities of data across the network isn't

necessary.

 Business rules can be enforced centrally and by allowing Java stored procedures to be

replicated between, say, the headquarters and the branch offices.

 Various configurations can be supported, such as client/server and multi-tier

configuration.

 The use of Java in the development of stored procedures provides an open and

ANSI/ISO - complaint standard environment. This allows the stored procedures to be

portable across various platforms.

 Java and PL/SQL can inter-operate very well to allow application reuse.

 You develop Java stored procedures by following these general steps:

1. By using a standard Java tool, develop a Java program that you want to make a stored

procedure. Oracle provides Jdeveloper and SQLJ, which you can use to develop efficient

Java programs quickly.

2. After the Java program is written, load it into Oracle8I's JVM. Java source text can be

loaded as standard Java.class files or as Java .jar files. To load Java class files in Oracle8I,

RDBMS Concepts and Oracle 8i

397

issue the CREATE JAVA DDL command, or use the LOADJAVA utility to automate the

loading process.

3. Register the Java program with SQL by exposing the top-level entry point, which SQL

can use to call Java. These exposed entry points are the only calls that SQL can make to

this Java program. Subsequent Java-to-Java calls can be made within the JVM as needed.

You should also make sure that the data types are appropriately mapped between Java

and SQL.

4. Give appropriate rights to the users so that they they can call and run this procedure.

5. Call the Java stored procedure from SQL DML, PL/SQL, or triggers.

21.7 Short Summary

 Oracle recognizes Java as a very powerful language that's quickly gaining acceptance in

the development community for deploying enterprise applications.

 JDBC is a standard set of classes that allow application developers to access and

manipulate relational databases from within Java programs.

 JDBC / OCI driver used for client / server Java applications, as well as middle-tier Java

applications running in a Java application server.

21.8 Brain Storm

1. Explain about JVM?

2. Explain the JDBC concepts?

3. How to create Java stored procedures, Explain?

4. Explain the tools we used to run java class in oracle?

E-Commerce Concepts and Application Design

398

Lecture 22

Oracle Internet File System

Objectives

After completing this lesson, you should be able to do the following

 Discuss about Loading Java

 Describe about the Drop Java Utilities

 How to about Registering Java

 Discuss about Oracle Internet File System

E-Commerce Concepts and Application Design

399

Coverage Plan

Lecture 22

22.1 Snap shot

22.2 Loading Java Classes into the Database

22.3 Loading Java & Drop Java utilities

22.4 Registering Java Programs

22.5 Oracle internet file system

22.6 Short summary

22.7 Brain Storm

E-Commerce Concepts and Application Design

400

22.1 Snap Shot

In this session we learn about how we use java in oracle. For this we know the loading java

utility and drop java utilities. In this load java utility we learn the input sources of oracle8i

and we know about jdeveloper. We understand this concepts for using simple java program.

22.2 Loading Java Classes into the Database

Java developers write Java programs by using a standard Java tool such as AppBuilder for

Java. They debug the programs locally and then load them into the database. Oracle8I accepts

two input sources:

• A binary file on the operating system level

• A LOB column in the RDBMS

The two input sources can be obtained in three formats:

• Standard Java source texts automatically recompiled by the Oracle Java byte code

compiler

• Java binaries

• Java resources

Java programs are stored as database library units. The JVM's class loader loads Java from

any input source in any format into an RDBMS libunit. Three types of libunits are provided,

one for each type of input.

22.3 Loading Java & Drop Java utilities

 Using the LoadJava and DropJava Utilities

LoadJava is a utility that Oracle provides to automate loading Java programs into the

database. LoadJava is written in Java and uses the JDBC drivers to communicate with the

database. It can take input, which can be Java source texts, Java binaries (.class), and Java

archives. It doesn't load Java resources directly, but you can archive (.jar) the Java resources

and then load the JARs via the LoadJava utility.

E-Commerce Concepts and Application Design

401

DropJava is a complimentary utility you can use to drop Java binaries and archives from the

libunits.

When LoadJava is run, it performs the following tasks:

1. It creates a system-generated table, create$table, that can be used to load Java.

2. The Java binaries and JARs are loaded into a BLOB column of this system-generated

table.

3. CREATE JAVA is invoked to load Java from the BLOB column into database libunits.

The syntax for LoadJava is as follows:

LoadJava [-user connectstring] [options]

In this syntax,

• Connectstring is of the form username / password@database and is used to specify the

database schema to load Java into.

• Options that can be specified include the following:

 -o Use the JDBC/OCI driver

 -t Use the thin JDBC driver

 -v Use verbose mode to indicate the status of the load as it

 occurs.

 -f Force loading of classes by replacing existing classes. The

 default is to load only those that don't exist and those that

 have been modified.

 -r The resolver spec to use during the load

 -s Create public synonyms for the loaded classes.

 -g Grant permissions on loaded classes

 -h Obtain help on the syntax

The following code example loads a Java class named Test.class into the schema SCOTT

mailto:password@database

E-Commerce Concepts and Application Design

In the specified server using thin JDBC drivers. The class is forced, and status information is

provided as the loading proceeds.

LoadJava -user scott / tiger@myserver:5521:orcl -t -f -v Test.class

22.4 Registering Java Programs

Unlike PL/SQL procedures, Java procedures aren't automatically available to SQL. You have

to register the Java programs by publishing the Java entry points so that SQL can call the Java

methods. These Java methods can, in turn, make Java-to-Java calls within the JVM. Publishing

Java to SQL can be accomplished in two steps:

1. Create a PL/SQL program that provides a type system wrapper for the Java method.

Known as the call descriptor, this program specifies the mapping from Java types to SQL

types, the mapping of the parameter modes, and so on.

2. At runtime, the SQL and PL/SQL code can call the "wrapper" program. This call is

intercepted by the JVM, which executes the Java method in the database's address space.

Oracle8I provides a new SQL DDL syntax that you can use to specify the PL/SQL call

descriptor. The PL/SQL call descriptor consists of two parts:

• The PL/SQL procedure PSEC declaration, which represents a proxy for the Java method

• The body of the PL/SQL program, which is composed of the Java method signature

The oracle.sql package provides automatic datatype conversion between Java, SQL, and

PL/SQL.

MAPPING JAVA TO SQL AND PL/SQL DATATYPES

JAVA SQL and PL/SQL

String, oracle.sql.CHAR CHAR, VARCHAR2

Oracle.sql.DATE DATE

402

mailto:tiger@myserver:5521:orcl

E-Commerce Concepts and Application Design

Int, Integer, float, Float NUMBER, DECIMAL,INTEGER

Double, Double FLOAT, REAL,DOUBLE

Oracle.sql.NUMBER PRECISION

Oracle.sql.BLOB BLOB

Oracle.sql.CLOB CLOB

Oracle.sql.BFILE BFILE

Oracle.sql.RAW RAW and LONG RAW

Oracle.sql.ROWID ROWID

Oracle.sql.OracleObject Oracle8 objects

Oracle.sql.REF Oracle8 REF

When you use Java stored procedures, you should be careful about using different modes for

the parameters. Java accepts only IN arguments by reference, whereas SQL and PL/SQL use

IN, OUT, and IN OUT modes of parameter passing. When using IN parameters, consult the

Table to determine the data type mapping that can be used between Java and PL/SQL types.

While using OUT and IN OUT parameter modes in SQL and PL/SQL, the corresponding Java

parameter should be a one-element array of the appropriate Java type so that no mismatch

occurs with the use of parameters in the Java stored procedures.

Here's the syntax for declaring the PL/SQL call descriptor:

CREATE [OR REPLACE]

PROCEDURE proc_name [([sql_parameters])] :

FUNCTION func_name [([sql_parameters])]

 RETURN sql_type

AS LANGUAGE JAVA NAME 'Java_fullname ([Java_parameters])

 [return Java_type_fullname]'

In this syntax,

sql_parameters := sql_type> [, sql_parameters]

Java_parameters := Java_type_fullname [, Java_parameters

 A JAVA STORED PROCEDURE

/* The Java method 'greetings' takes a String argument and returns

a string value. This method needs to be published in SQL */
Java Class Welcomejava:

 Public class welcome {

 Static public String

403

E-Commerce Concepts and Application Design

404

 Greetings (string firstname) {

 Return "Welcome" + firstname;

 }

 }

/* PL/SQL proxy for welcomejava

It maps the string datatype to SQL VARCHAR2 */

CREATE FUNCTION greetings (fname VARCHAR2) RETURN

VARCHAR2 AS

 LANGUAGE JAVA NAME

 'Welcome.greetings (Java.lang.String)

 return Java.lang.String'

Java methods called from SQL or PL/SQL execute under definer's privileges. Java methods

called from other Java methods can execute under definer's or invoker's privileges, but by

default, they execute under the invoker's privileges. This is a marked difference from

execution of PL/SQL procedures that execute under the definer's privileges. In order to

execute a Java method, users must have the following privileges:

• EXECUTE rights on the PL/SQL call descriptor for the Java method

• EXECUTE rights on the Java class

• EXECUTE rights on the Java classes and resources used by the Java class being called

To Do: Write a Java Stored Procedure

Now you have a chance to write a Java stored procedure that modifies an employee record to

give the employee a raise and change the employee's location. This example uses Jdeveloper,

but you can use any Java tool or editor to write the Java program.

Follow these steps:

1. Start Jdeveloper

2. Choose File, New Project

3. Write the Java programs as shown in Listings updjava and empjava one in each Java

source file.

4. Compile both source files: updjava and empjava

5. From the toolbar, select the New button.

6. On the Deployment page, choose Stored Procedure Profile.

7. Click OK to start the Stored Procedure Wizard

8. For the wizard's first two dialog boxes, click Next.

9. In the next dialog box, select only the updjava file.

E-Commerce Concepts and Application Design

405

10. Click Next in the Step 3 dialog box

11. In the next dialog box, select Thin JDBC Driver and then Next.

12. Specify the connection parameters: username, password, host ID, Oracle SID, and port

number, Click Next.

13. Click Next for the Step 6 dialog box

14. In the next dialog box, select the method that has to be published, and click Next.

15. Click Finish. The Java method is now loaded and published to SQL.

16. Select the Project pull-down menu from the menu bar

17. On the Run/Debug page, provide the appropriate connection parameters, for example,

Jdbc:orcale:thin:@myserver:5521;ORCL scott tiger

18. Choose Send Run Output to Execution Log.

19. Click OK.

20. Compile the empjava file.

21. Run empjava to invoke the procedure

UPDJAVA - USING SQLJ TO WRITE JAVA STORED PROCEDURES

package modify_emp;

import sqlj.runtime.*;

import sqlj.runtime.ref.*;

public class update_emp {

 public static int update_emp (String name, int raise, String location)

{

int newsal = -1;

String newloc = "UNKNOWN";

try {

 # sql {UPDATE emp

 SET sal = sal + :raise

 WHERE ename = :name } ;

#sql {UPDATE emp

 SET city = :location

 WHERE ename = :name } ;

#sql {SELECT sal INTO :newsal

E-Commerce Concepts and Application Design

406

 FROM emp

 WHERE ename = :name} ;

#sql {SELECT city INTO :newloc

 FROM emp

 WHERE ename = :name} ;

}

catch (Java.sql.SQLException e) { }

return newsal;

 }

}

EMPJAVA-CALLING JAVA STORED PROCEDURES

//Title: Using SQLJ with Java Stored Procedures

//Author: Megh Thakkar

//Description: This Java program modifies the employee record by

//giving the employee a raise and changing the employee's location package modify_emp;

import Java.sql.*;

import Java.io.*;

class maintain emp

{

 public static void main (String args [])

 throws SQLException, IOException

{

 String cstring = args[0];

 String uname = args[1];

 String pwd = args[2];

 //Load JDBC Drivers

 DriverManager.registerDriver

 (new oracle.jdbc.driver.OracleDriver());

 // Connect to the database using the specified parameters

E-Commerce Concepts and Application Design

407

Conection conn = DriveManager.getConnection (cstring, uname, pwd);

 //Prepare to call the stored procedure

 CallableStatement cstmt = conn.prepareCall (" { ? = call

 modify_emp_update_emp (?, ?, ?, ?) } ") ;

 // We are using positional arguments

 // The first argument is declared as an OUT parameter

 cstmt.registerOutParameter (1, Types.INTEGER);

 //The second argument is SCOTT

 //The third argument is the raise

 // The fourth argument is the city

 cstmt.setString (2, "SCOTT");

 cstmt.setInt (3, 50000);

 cstmt.setString (4,"MIAMI");

 // Execute the command

 cstmt.execute () ;

 //the first argument returns the new salary

 int new_salary = cstmt.getInt (1);

System.out.println ("The new salary for SCOTT is: " + new_salary);

 }

 }

USING THE JDBC DRIVER WITH JAVA APPLICATIONS

//Title: Using JDBC

//Author: Megh Thakkar

//Description: This Java program quiries the emp table to find the

// location of each employee

package package1;

E-Commerce Concepts and Application Design

408

import Java.sql.*;

public class find_location

{

 public static void main (String args[])

 throws SQLException

 {

 String cstring = args [0] ;

 String uname = args [1] ;

 String pwd = args [2];

 // Load JDBC Drivers

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 }

 catch (ClassNotFoundException e)

 {

 System.out.println ("Unable to load driver");

 }

//Connect to the database using the connection parameters

 Connection conn=DriverManager.getConnection (cstring, uname, pwd);

 // Create the employee locations and store

 Statement stmt = conn.createStatement() ;

 //Query the employee locations and store

 //the output in the result set

ResultSet rset = stmt.executeQuery ("select empno, ename,city from emp");

 while (rset.next())

 {

 //Get Employee Number

 int eno = rset.getInt (1);

E-Commerce Concepts and Application Design

409

 //Get Employee Name

 String ename = rset.getString (2);

 // Get Employee city

 double loc = rset.getString (3);

 System.out.println (eno + " + ename +" " + city);

 }

 conn.close () ;

 }

 }

22.5 Oracle Internet File System

It has been found that most companies store very little information in relational databases.

Most of the information is now held in file systems. File systems basically fragment

information such as documents, Web content, and so on, into separate data stores, which

have their own storage and access methods. The current technique of storing information in

file systems has several problems:

• End users - End users have to install multiple clients, each with its own configuration set

to access the information in the separate data stores. Users also find it extremely difficult

to keep track of the various datatypes associated with the project they're working on.

• System administrators - System administrators have a difficult time maintaining security,

performance, and configuration; providing access to users; and maintaining the integrity

of the data, which may be spread across multiple machines and data stores.

• Application developers - Application development is slow because of the necessity for

developers to understand different operating system peculiarities; understand different

APIs to access files, Web content, and relational data; and keep track of all the

components of the project.

One approach to simplifying the problems associated with storing information in file systems

is to move as much data as possible into a relational database such as Oracle.

However, this approach also presents several problems.

E-Commerce Concepts and Application Design

410

• Certain types of information, such as email and simple files, aren't efficiently used and

manipulated using a relational database.

• End users have to be more "SQL aware."

• In a regular file system, you double-click a file to access its contents. For a file stored in a

relational database, you have to download the file, edit the file, and upload it back to the

database.

Oracle8I provides the Internet File System (IFS) to merge the file system with the database.

IFS is a database file system (DBFS) that stores the data in the database, rather than leave the

data outside the database and provide links from the database to access the information.

Placing data within the database provides several benefits:

• Simplified data security - Clients can access the information by using multiple protocols

and client interfaces. To access IFS, you can use the following protocols:

SMB Allows users to drag and drop files. Files can be edited within IFS. Access is possible

through Windows 95, Windows 98, and Windows NT.

HTTP Used for Web browsers.

FTP Access to IFS is through FTP. The contents of IFS are viewed as FTP directories from

which such as Microsoft Outlook and Eudora.

SMTP,IMAP4, POP3 Access to IFS is through email clients such as Microsoft Outlook and

Eudora.

• Application developers can use a common API for programming against the database.

• Advanced search capabilities can be used to search the contents of the DBFS using SQL

and provide much better search performance compared to file systems.

• Database-level security is provided to simplify administration.

E-Commerce Concepts and Application Design

411

• Check in and check out facilities simplify the management of information and increase

productivity.

• Enhanced scalability can ease data administration

• Document parsing and rendering make it possible to view the same document in

different formats.

• Data within the database is tightly integrated with the Oracle Enterprise Manager,

ConText data cartridge and Oracle8I features such as objects.

• IFS messaging can be used to simplify administration by sending email to the system

administration when important events occur.

• You can write and use Java stored procedures and EJBs

• Version control is provided so that a new version of a file can be created when you copy

or edit a file. One version can be identified as "official" and will be used by all users.

• Automatic purging of files after a specified "expiration" period simplifies data

management.

Oracle IFS runs as a Java application that runs inside a Java machine in Oracle8I, providing a

flexible and easy-to-use mechanism for storing and manipulating the data. Multiple protocol

can be used to access the data. Application development is achieved by using the

programming APIs provided by Java, CORBA, and PL/SQL.

IFS uses a "folder" strategy to make itself appear as a mounted network drive. The contents of

IFS appear in folders and subfolders, which can be easily manipulated just like a file system.

In addition to the manipulation of folders provided by IFS, you can store relational and non-

relational data in the same folder.

Relational data also appears as files, and you can construct a document by merging relational

and non-relational data. The documents can further appear as files.

E-Commerce Concepts and Application Design

412

Another important characteristics of an IFS "file" is that it can have multiple parent

directories. For example, an email document (which appears as an IFS file) can be part of two

separate folders.

Several additional features are planned for the future release of IFS.

• Support for NFS

• Application development tools for IFS

• Portable IFS

• "File system" tablespaces

• Integration with SQL

22.6 Short Summary

 Java is a key component of the Oracle8i strategy, and this chapter discusses the various

ways Oracle has implemented Java. The Java Virtual Machine makes it a very easy

environment to run Java applications. You have seen how to write Java stored

procedures and the use of Enterprise JavaBeans.

 Oracle provides two types of drives to allow Java programs to access the database: thin

drivers and JDBC/OCI drivers. No matter which driver you use, the code is still the

same, but you use different connect strings.

22.7 Brain Storm

1. Which type of input source we used in oracle8I?

2. How to use Jdeveloper explain?

3. What are the protocols we need to access IFS?

RDBMS Concepts and Oracle 8i

413

Lecture 23

Introduction to Forms

Objectives

After completing this lesson, you should be able to do the following

 Identifying the main form builder executables

 Identifying the main components of form builder

 Identifying the main objects in a form module

 Control forms across several windows and database transactions

RDBMS Concepts and Oracle 8i

414

Coverage Plan

Lecture 23

23.1 Snap shot

23.2 Introduction to forms

23.3 Using forms builder

23.4 Form wizards

23.5 Creation of forms

23.6 Short summary

23.7 brain Storm

RDBMS Concepts and Oracle 8i

415

23.1 Snap Shot

In this session introduces you to the oracle developer. This lesson teaches you to how to build

effective and professional form applications using oracle developer form builder. This is only

one component of oracle developer, and it is useful for you to understand the whole suite of

components and the capabilities of oracle developer in building consistent, integrated

applications.

Oracle developer is a suite of oracle components that you can integrate to build

comprehensive applications.

Oracle developer is one group of a family of products that support the design, creation, and

running of applications across a variety of platforms.

Oracle developer enables you to build high- performance systems that take advantage of

graphical user interface, database, client-server, and web technologies.

23.2 Introduction to forms

As commercial application developers, our primary task is to design data-entry forms that

look as close to the printed to the printed sheets of paper that the data entry operators use in

the current manual system of data collection.

Hence when the data entry operators switch from paper/pen to keyboard/VDU what they

see on the VDU will look familiar to them.

 Oracle Forms

Oracle Forms Builder provides a powerful ‘Graphical User Interface’ to design such forms.

All objects, properties, triggers can be selected by simply clicking on an appropriate icon. A

Forms wizard can be used to quickly create forms. This tool allows commercial application

developers to design forms that will capture, validate and store data with the very minimum

of coding.

RDBMS Concepts and Oracle 8i

416

Forms Builder, Oracle’s GUI based forms creation tool comprises of the following

components:

• Forms Builder

• Forms Compiler

• Forms Runtime

Forms Builder is what is used create a form. The design and layout of data entry screens, the

creation of event driven PL/SQL code used for data validation and navigation can be done

via Forms Builder.

Forms Compiler is required to compile the file created in Forms Builder and create a binary

file, which can be executed by Forms Runtime.

Forms Runtime is used to run the compile code created by Forms Compiler. To run an Oracle

form only the Forms Runtime module is required. At the time of software deployment only

the Forms Runtime module needs to be installed on machines on which forms created by

Forms Builder are deployed.

To create, add program code, test/debug on Oracle form, a complete installation of Oracle

Forms Builder is required.

Application Development in Forms 5.0

Applications built using Oracle Forms Builder will contain the following components;

1. Form Module

2. Menus

3. PL/SQL Libraries

4. Object Libraries

5. Database Objects

 Form Module:

RDBMS Concepts and Oracle 8i

417

The primary object created using Form Builder is a form. The Form module is nothing but a

collection of objects such as blocks, canvas, frames, items and event based PL/SQL code

blocks called triggers housed in an MS Windows ‘Command’ Window.

 Menus:

The menu module is a collection of objects such as menu items, sub menus, sub menu items

and PL/SQL code blocks.

PL/SQL Libraries:

The library module is a collection of PL/SQL functions and procedures stored in a single

library file. This library file is then attached to a form/menu module. All other objects in the

form or menu can now access and share the collection of PL/SQL functions and procedures.

Object Libraries:

In a development environment, standards need to be set and maintained. Standards can be

maintained by developing common objects, which can be reused throughout a commercial

application as well as across applications.

Object Libraries provides an easy method of creating and storing reusable objects and

enforcing standards.

 An Object Library can be created to:

• Create, store, maintain and distribute standard and reusable objects.

• Rapidly create applications by dragging and dropping predefined objects on to form.

Database Objects:

Oracle’s interactive tool. i.e. SQL *Plus allows the creation of Database objects like Stored

Procedures, Stored Functions and Database Triggers using appropriate SQL and PL/SQL

syntax.

RDBMS Concepts and Oracle 8i

418

Form Module

A Form module consists of the following components:

• Blocks

• Items

• Frames

• Canvas Views

• Windows

• PL/SQL Code blocks

Blocks:

A form contains one or more blocks. Blocks are logical containers and have no physical

representation. Only the items contained in a block are visible in the form interface.

A block can be conceptualized as a parent container object that holds a related group of child

objects such as text items, lists, and push buttons, etc for storing, displaying, and

manipulating table data. Each block has a set of properties that determine the behavior of the

block.

A block connected to a database object is called a ‘Data Aware’ block. A block not connected

to any database object is called ‘Control Block’. A block can be connected to a database

object like a table, view or synonym. A block can also be connected to ‘Stored Procedures’

Each Data Block can be directly related to a (single) database table, view or synonym. A table,

view or synonym connected to a block is known as the ‘Base Table’. Each column of the base

table may have an associated block item bound to it. The association or binding of block items

with table columns is done by giving the item on the block the same name as the table

column. This direct relationship allows the data in a base table to be manipulated at will.

Blocks have several characteristics that can be defined. Some of these are the attributes that

determine how to sort information retrieved into a block from the base table, the number of

records that can be displayed din the block, etc.

RDBMS Concepts and Oracle 8i

419

Blocks can be related to each other by specifying a master-detail relationship. A master-detail

relationship corresponds to a primary-foreign key relationship between the base tables of the

blocks. Whenever a row is retrieved in the master block from the master table, the master

detail relationship automatically displays the corresponding set of rows from the detail table

in the detail block, without any special processing code being required.

Items:

Items are objects contained in blocks. At the most basic level, items serve as containers for

data. The user can manipulate values in an item. A procedure or a trigger can also be used to

manipulate item values. An item is always associated with a block. Each block normally has

one or more items.

The items in a block are usually bound to columns in a base table. Entering data into such

items will determine the values entered in associated columns of the base table. Alternatively,

items can be filled with date from the base table by performing an SQL query on the base

table.

Items need not always be bound to the columns of a base table. They can also hold calculated

values, display related information from associated tables or accept operator input for

processing later. Items not connected to a base table are called ‘Control Items’.

Items have attributes that can be set via the item’s property palette. These attributes may be

set dynamically at runtime via suitable via suitable code as well. These attributes determine

an item’s behavior at form run time.

Oracle Forms Builder supports several types of items that can be used to a build a form. The

items supported by Oracle Forms Builder are described below:

RDBMS Concepts and Oracle 8i

420

 Ellipse

Fill color

Line color

Text color

 Polyline

 Arc

 Line

 Reshape

 Rotate

Polygon

Rounded rectangle

Text

 Freehand

 Label

Tab canvas Sound item
Stacked canvas

 Rectangle

Select

 Magnify

 Text Item

 Text item displays data values, and can be edited.

Display Item

The display item shows information that must be fetched or assigned
programmatically. These items are not navigable to and their contents cannot be
directly edited.

List Item

A list item displays a list of choices from which only one value can be selected at a
time.

 Button

A button is a rectangle with text label or an icon graphic. These items are normally
used to initiate some action.

 Check Box

A check box is a text label with an indicator that displays the current value as
checked or unchecked. It is normally used as an item, which takes in a yes/no or
true/false like value. This item is normally bound to a table column, which must hold
a single character value or a boolean value.

RDBMS Concepts and Oracle 8i

421

 Radio Group

A radio group of two or more radio buttons, from which only one radio button can be
active. This item is used on a form to hold several radio buttons which are bound to a
single table column. A technique commonly used when multiple options are
available, with only a single value being stored in a table column.

 Chart Item

A chart item is a bordered rectangle of any size that displays a chart generated by the
Oracle Graphics Tool.

Image Item

An image item is a bordered rectangle of any size that displays images stored in a
database or in a file. Image items are dynamic and can change with the image being
displayed when required.

OLE Container

An OLE container is an area that stores and displays an OLE object. OLE objects are
created for OLE server applications. OLE objects can be embedded or linked in an
OLE container.

This feature is available for O/s that supports Object Linking and Embedding. Object
Linking and Embedding is currently available on Microsoft Windows and Macintosh
platforms.

OCX Control

An OCX control is a custom control that simplifies the building and enhancing of
user interfaces. OCX Controls are available for forms running on Microsoft windows,
as Microsoft Windows is the only O/s that supports OCX controls.

Frames:

A frame is a graphic object that appears on a canvas. Frames are used to arrange items within

a block.

• A frame is an object with properties.

• Each frame can be associated with a block.

• When a frame is associated with a block, the items in the block are automatically

arranged within the frame.

• Frames can be sub-classed or included within an Object Library to enforce visual

standards.

RDBMS Concepts and Oracle 8i

422

Canvas View:

The canvas-view is the ‘background’ or which Items, Text and Graphics or Frames are placed.

The items in a block can be placed on different canvas-views. Each canvas-view can be

displayed in different windows.

The Oracle Forms, Block wizard allows items to be placed on different types of Canvas like

‘Content’ and ‘Tab’.

Window:

Every new form is automatically held in a default window named WINDOW 1. Additional

windows can be created as needed by inserting them in the Object Navigator under the

‘Windows’ node.

For each window created, at least one canvas-view must be created. The canvas-view is the

background on which items are placed. The canvas-view is linked to a window by setting the

‘Window’ canvas-view property appropriately.

Window properties can be set at design or runtime, which determine the appearance and

functionality of the window at runtime.

 PL/SQL Code Blocks:

Data manipulation can be done using the default form created by the Oracle Forms wizard.

Forms created by the Forms Wizard can be customized to suit a commercial application or to

map to the standard set for the application.

The Oracle Forms tool provides suitable facilities to attach PL/SQL code blocks to ‘Events’

built into all Form objects. This allows the form to map to the object oriented standard of

‘Event driven’ form processing. ‘Events’ can be conceptualized as PL/SQL code holders that

automatically execute the PL/SQL code when a specific event occurs. Based on the needs of

the application, an appropriate event must be selected and PL/SQL code in its rigid format

must be written in the selected event. For example if data needs to be validated to ensure

input / output or business rules, PL/SQL code must be written in the WHEN-VALIDATE-

RDBMS Concepts and Oracle 8i

423

ITEM event. PL/SQL code written in this event gets executed when item navigation occurs

after data entry.

Every form contains at least one block, one window, one canvas and one or more items. Each

item on the form has a set of attributes or characteristics, which determine how the item

behaves at, run time. Form items are named so that code in PL/SOL blocks used for form

processing can reference them.

23.3 Using forms builder

A general understanding of the tools available with Forms Builder will make life a lot easier

when actually creating a form via Forms Builder. The tools are:

1. Object Navigator
2. Property Palette
3. Layout Editor
4. PL/SOL Editor
5. Menu Editor

 Object Navigator:

Blocks, items, frames, canvas and windows are constituent parts of a form. They are called

objects. While developing forms, several objects are created. Each of these objects may have

their own set of objects beneath them. The object Navigator displays each object created and

allows navigation through this hierarchy of objects.

RDBMS Concepts and Oracle 8i

424

 Property Palette:

Property Palette allows the examination of the properties of each object. It also allows the

setting of properties for the object.

 Layout Editor

Forms developed will have different objects like text items, check boxes, radio buttons, labels,

graphic to name a few. The Layout editor allows the sizing, positioning and alignment of

these objects. Font characteristics can also be set through the layout editor.

PL/SOL Editor:

RDBMS Concepts and Oracle 8i

425

In Commercial Application, application specific tasks need to be performed. To achieve this

appropriate PL/SOL code must be written and attached an event, belonging to a Form object.

The PL/SOL editor provides the interface via which this is done.

 Menu Editor:

This tool is used to create defined menus. Forms Builder automatically provides a default

menu with default functionality like querying, inserting, deleting records and navigating

through different records. However for system specific functionality a user defined menu

which overrides the default Oracle Menu needs to be created. This is done via the Menu

Editor.

23.4 Form Wizards

Forms builder provides a number of wizards for creating different objects on a form. Some of

these wizards are:

 Data Block Wizard:

The Data Block Wizard allows the creation of data blocks. The data block wizard displays a

welcome dialog box and then asks for additional information to create the data block. The

information required to create a data block will be Data Source. I,e. Table or Stored

Procedure.

If Table is selected as a data source, the Table Name and the Field Names must be specified.

If a Stored Procedure is selected as a data source, the Procedure Name must be specified.

 The Data Block wizard then leads to a Layout wizard

 Layout Wizard

The Layout Wizard works in conjunction with the Data Block wizard. The Layout Wizard

allows the layout of the data blocks objects to be designed.

The Layout Wizard displays a welcome dialog box and then asks for information about the

canvas that must be used in the layout. The canvas information required is canvas name and

RDBMS Concepts and Oracle 8i

426

canvas type. A list of data block s and the columns included in the block are displayed. A

specific canvas item must be bound to each table column selected.

Each item associated with a table column and displayed on the form generally includes a

prompt label that gives information on the type of data to be loaded into the item. A label or

prompt along with its height and width can be specified for each table column.

The layout style I e, Form or Tabular is then specified. The Layout style determines how

items will be arranged on the form.

Items are grouped inside a frame. The frame title, number of records to be displayed and the

distance between the records needs to be given to the layout wizard.

The form layout is then created based on the information specified in the Layout wizard. The

form so created so default form. This form can be run to perform data manipulation

operations such as View, Insert, Update and Delete.

 Property Palette

You can modify the appearance and behavior of a data block after it has been created. To do

this use one of the following methods:

• Reentrant wizards: Reenter the Data Block Wizard or the Layout Wizard as described in

the previous lesson to modify the data source and visual presentation of objects within

the data block.

• Layout editor: Invoke the layout editor and make your modifications manually.

• Data Block Property Palette: Open the Data Block Property Palette and change individual

property values to modify the behavior of the data block at run time.

• Frame Property Palette: Open the associated Frame Property Palette and change

individual property values to modify the behavior of the data block at run time.

• Frame Property Palette: Open the associated Frame Property Palette and change

individual property values to modify the arrangement of items within the data block.

RDBMS Concepts and Oracle 8i

427

23.5 Creation of Forms

For creating a form when we open a developer 2000. Opening screen allows the use of

wizards to

♠ Create new forms

♠ Open existing forms

♠ Build a form from a template or

♠ Learn more about forms builder

♠ If the data block creation option is selected, an appropriate wizard is displayed

♠ If manual form creation is specified, a new form will be created.

The window is like the below figure.

For this when we choose the data block wizard the next screen will be like this.

In this above figure we have two options ‘table or view’ or ‘stored procedures’. For this we

choose the table or view option.

RDBMS Concepts and Oracle 8i

428

In the next window we choose any table for using the browse button. For creating a form we

connect the developer 2000 to oracle for giving the user name and password. After connecting

the oracle database in available columns it will display all the fields in that table for this we

choose the needed columns and place it into database item columns for using the below buttons.

 Used to include a single columns.

 Used to include a multiple columns or all columns.

 Used to remove single columns.

 Used to remove multiple columns or all columns.

The given figures are denote the creation of form there are nine figures for step by step

creation of form for using these windows we can create both data block wizard and layout

wizards for this we give the table name and field name for creating the form.

RDBMS Concepts and Oracle 8i

429

RDBMS Concepts and Oracle 8i

430

RDBMS Concepts and Oracle 8i

431

RDBMS Concepts and Oracle 8i

432

23.6 Short Summary

♣ Form builder can present information through textual items, GUI objects, and bitmapped

images. User can perform database transactions by interacting with these objects.

♣ Wizards help you build simple, standard modules very quickly.

♣ Oracle developer provides a suite of components with common features and a common

builder interface for form, report and graphic charts.

♣ Each oracle developer component has a set of preferences that you can alter for the

current and subsequent builder sessions.

♣ The product provides a common builder interfaces, including object navigator, layout

editor, PL/SQL editor and property palette components, and it offers a comprehensive

online help system.

23.7 Brain Storm

1. Explain about Oracle developer?

2. Explain the components of oracle developer?

3. How to create a form explain it?

4. Explain about property palette.

RDBMS Concepts and Orcale 8i

433

Lecture 24

Property Class

Objectives

After completing this lesson, you should be able to do the following

 Discuss about Property class

 Describe visual attributes

 Describe about library

 Simplifies reuse in complex environments

 Create and control alerts

 Describe about object libraries

 Simplifies the sharing of reusable components

 Create editors and associate them with text items in a form module

RDBMS Concepts and Orcale 8i

434

Coverage Plan

Lecture 24

24.1 Snap shot

24.2 Property class

24.3 Visual attributes

24.4 Library

24.5 Alerts

24.6 Object libraries

24.7 Editors

24.8 Short summary

24.9 Brain Storm

RDBMS Concepts and Orcale 8i

435

24.1 Snap Shot

In this session we are working with property classes and visual attributes and differentiate

property class and visual attributes. In visual attributes defining a visual attribute object and

associating visual attributes objects to the items on the form. In this lesson we learn about

assigning property class to other objects on the form.

24.2 Property Class

Property class inheritance is powerful feature that allow you to quickly define objects that

conform to your own interface and functionality standards. Property classes also allow you to

make global changes to applications quickly. By simply changing the definition of a property

class, you can change the definition of all objects that inherit properties from that class. A

property class is a named object that contains a list of properties and their settings. Once you

create a property class you can base other objects on it.

For example, you might define separate property classes for enterable items, required items,

required items, read-only items. When you want to change the appearance and functionality

of all such items in an application, you need only update the properties in the property class.

There can be any number of properties in a property class, and the properties in a class can

apply to different types of objects. For examples, a property class might contain some

properties that are common to all types of items, some that apply only to text times, and some

that apply only to check boxes.

Property classes are separate objects, and, as such, can be copied between modules as needed.

Perhaps more importantly, property classes can be referenced in any number of modules.

Every object in a form module, as well as the form module itself, has properties that dictate

the object’s behavior. When an object is first created, it is automatically assigned several

property values by default. You can change by default. You can change these property

values in the Property Palette.

RDBMS Concepts and Orcale 8i

 Displaying the Property Palette

To display the Property Palette of an object, use any of the following methods:

 Select the object in the Object Navigator and then select ->Tools Property

Palette from the menu system.

 Double-click the object icon for the object in the Object Navigator (except for

code objects and canvases).

 Double-click an item in the Layout Editor.

 Select the object in the editor or the Object Navigator, and then click the right mouse

button. From the pop-up menu, select the Property Palette option.

 Property Palette Features

Feature Description

Property list The property list displays a two-column list of property names

and property values. Properties are grouped under functional

headings or nodes.

You can expand or collapse a node by using the plus and minus

436

RDBMS Concepts and Orcale 8i

437

icons beside the node name.

Find field The Find field enables you to quickly locate the name of a

particular property. The Search Forward and Search Backward

buttons enhance your search.

Toolbar The toolbar consists of a series of buttons that provide quick

access to commands.

 Using the property palette

Each form object has various types of properties. Properties are manipulated differently,

depending on the property type. Here is a summary of controls used in the property palette:

Property

Control

Description

Text field This is displayed when the current property can be set by entering a

text value. For longer text values, an iconic button also appears,

enabling you to open a text editor.

Poplist This occurs where the property is yes or no, or where a fixed set of

values are allowed. Click the down arrow to open the list and select

a value. Alternatively, double-click the property name to cycle

through the values.

LOV

Window

LOVs occur where a potentially large list of possible values is

available. Click the iconic button in the property value column to

invoke an LOV.

More button Use this when more complex settings are needed. Click the More

button to open the extra dialog.

 Property Palette Icons

Each property in a Property Palette has an icon to its left. Here is a summary of these icons

and their description:

Icon Description

Circle Specifies that the property value is the default value

Square Specifies that the property value has been changed from the default

RDBMS Concepts and Orcale 8i

Arrow Specifies that the property value is inherited

Arrow with

across

Specifies that the property value was inherited but has been overridden

Property classes are similar to named visual attributes, but there are important differences

you should be aware of:

• Named visual attributes define only font, color, and pattern attributes; property classes

can contain these and any other properties.

• You can change the appearance of objects at runtime by changing the named visual

attribute programmatically; property class assignment cannot be changed

programmatically.

• When an object is inheriting from both a Property class and a named visual attribute, the

named visual attribute settings take precedence, and any visual attribute properties in the

property class are ignored.

 Create Property Classes:

You can define property classes in form and menu modules. In the Object Navigator,

property classes appear under the Property Classes node in the appropriate module.

There are two ways to create a property class. You can create a new property class in the

Object Navigator and then add properties to it as desired. Or, you can create a property class

from an existing list of properties in the Properties window.

 To Create a Property class in the Object Navigator:

1. In the Object Navigator, position the cursor on the Property Classes node and choose

Navigator Create

A property class object with a default name is inserted under the node. The new

property class does not yet contain any properties.

438

RDBMS Concepts and Orcale 8i

439

2. In the properties window, add properties to the class as desired.

 To Create a property class in the Properties window:

1. In the Object Navigator or an editor, select one or more objects so that the Properties

window displays the properties that you want to be in the property class.

2. In the properties window, click the Property Class button on the toolbar. An alert is

displayed to confirm the name of the class being created.

Adding and Removing Properties from a Property Class:

Once you have created a property class, you can add and remove properties from it as

desired. You can add properties one at a time, or with the Copy/Paste properties commands.

 To add a single property to a property class:

1. In the Object Navigator, select the property class so that its properties are displayed

in the Properties window.

2. In the Properties window, click the Add Property button on the toolbar. The

Properties LOV appears, showing the list of all Oracle Forms properties.

3. Select the property you want to add to the property class.

4. In the Properties window, set the new property as desired.

 To copy properties into a property class:

Use the Copy Properties command to copy the properties of existing objects, then use the

Paste Properties command to paste those properties and their settings to the property class.

 To remove a property from a property class:

RDBMS Concepts and Orcale 8i

440

1. In the Object Navigator, select the property class so that its properties are displayed in the

properties window.

2. In the properties window, click on the property you want to remove to select it.

3. Click the delete property button on the properties window toolbar. Basing an Object on a

property class. Note: you must already created the property class you can base objects on

it.

4. In the object navigator, select the property class so that its properties are displayed in the

properties window.

5. In the properties window, set the class property by selecting the desired property class

from the list of all classes defined in the active module.

When you base an object on a property class, the properties of the object are updated as

follows:

• Properties for which there is a corresponding property in the property class are updated

to match the property class setting.

• Properties for which there is no corresponding property in the property class are left

unchanged.

24.3 Visual Attributes

Visual attributes are the font, color, and pattern properties that you set for form and menu

objects.

A visual attribute is another object that you can create in the Object Navigator with properties

such as font, color, and pattern combinations.

When creating visual attributes, you can use the Font Picker and Color Picker to select the

font and color. When changing a font from the Property Palette, click the Font group itself to

invoke the Font Picker.

Every interface object in a forms application has a property called Visual Attribute Group,

which determines how the individual visual attribute visual attribute settings of an object are

RDBMS Concepts and Orcale 8i

441

derived. The Visual Attribute Group property can be set to Default, NULL, or the name of a

named visual attribute object.

 Partial Visual Attributes

Partial visual attributes are just like visual attributes, except that you need to set only the

properties that you want to be inherited by the objects that use them. This means that you

can apply a visual attribute that changes the font color without having to set the font name.

24.4 Library

A PL/SQL library is a collection of program units, including user-named procedures,

functions and packages. PL/SQL Libraries provide a convenient means of storing client-side

program units and sharing them among multiple applications.

Once a PL/SQL library is created, it can be attached it to any form or menu. The program

units stored in the PL/SQL library can be called from triggers, menu item commands, and

user-named routines written in the form or menu module to which the PL/SQL library

attached.

The same PL/SQL libraries can also be attached to other PL/SQL libraries. When a PL/SQL

library is attached to another PL/SQL library, program units within the attached PL/SQL

library can be referenced in the current library.

PL/SQL libraries support dynamic loading. Program units are loaded into a computer’s

memory only when an application needs it. This can significantly reduce the runtime memory

requirements of an application, but tends to slow an application. The trade off is between

speed Vs. memory usage.

 Library File Formats

 There are three library file formats, .PLL, .PLX, and .PLD.

1. .PLL

RDBMS Concepts and Orcale 8i

442

A library .PLL file contains both library source code and the compiled, platform specific

p-code (executable code). The .PLL file is created or updated when it is saved in the

library module. When the library module is saved, the changes are reflected in each

module to which the library is attached.

2. .PLX

A library .PLX file is a platform-specific executable. When an application is ready to be

deployed, there would be a need to generate a version of library files that contain only

compiled p-code.

3. ,PLD

 The .PLD file is a text format file, and can be used for technical documentation of the

library files.

 Creating And Attaching A Library To A Module

Opening, defining, compiling and saving library modules, creates a library.

One can define the following types of PL/SQL subprograms in a library:

• Procedures

• Functions

• Package specifications

• Package bodies.

 Creating a new library

1. In the navigator, to create a library, choose menu items File..New..PL/SQL library or

select the Libraries node and then click on Navigate..Create.

2. To create a program unit, expand the desired library node, select the Program Units

node, and then click Navigator..Create. The New Program Unit dialog appears.

3. Specify the Program Unit Name and its Type (Procedure, Function, Package Spec, or

Package Body). Click on OK. The PL/SQL Editor is displayed.

RDBMS Concepts and Orcale 8i

443

4. In the PL/SQL Editor, define appropriate program units and then click on Compile to

compile and apply modification. Click on Close to close the editor.

5. Choose Program..Compile..Incremental to compile any uncompiled library program

units, or click on Program..Compile..All to compile all library program units.

6. Click on File..Save to save the library module to a file or to the database.

24.5 Alerts

Commercial applications will generally encounter two types of error conditions. Those that

are system generated and those that arise out of business rules being violated by the data

being captured. In either case the user of the commercial application must be informed of

what occurred and if required be given information on how to correct the error condition.

For example, if the user has entered the cost price of a product as 0, then the system must display an

error message as ‘Cost Price cannot be 0’.

Often choices are given on how to actually process an event e.g. if the delete button is clicked

the system must ask for a confirmation to delete the current record. If the user clicks on the ‘Yes’

or ‘OK’ button, the record must be aborted.

Oracle Forms Builder allows creation of an object called an ‘Alert’ that makes displaying an

error message and/or offering different processing choices quite simple and elegant.

An alert is a modal window that displays a message. Alerts are used to inform the user of

unusual situations or to give a warning for an action that might have undesirable or

unexpected consequences.

There are three styles of alerts: Stop, Caution, and Note. Each style denotes a different level

of message severity. Message severity is represented visually by an icon that is displayed in

an alert window.

Oracle Forms Builder uses many built-in alerts that display pre-defined messages. Custom

alerts created by a user can also be displayed in response to application-specific events.

RDBMS Concepts and Orcale 8i

444

When an event occurs that causes an alert to display, the alert must be responded to by

selecting one of its predefined Alert Buttons. Selecting any button immediately dismisses the

alert and passes control back to the program that called it.

When an alert is created, basic information such as the message to be displayed by the alert

and the text labels for the alert buttons must be specified.

After creating an alert, an appropriate trigger or user-named routine must be written to

display the alert in response to a particular event. In addition, the action that each button

initiates is determined by the PL/SQL code written in the trigger or user-named routine.

An Alert can be displayed by the SHOW_ALERT() function. The SHOW_ALERT () function

returns alert_button 1, alert_button2 or alert-button3 based on the button clicked by the user.

This return value can be used to determine what action that has to be taken.

 Creating and Controlling Alerts

• Display a message that the operator cannot ignore, and must acknowledge.

• Ask the operator a question where up to three answers are appropriate (typically Yes, No

or Cancel).

You handle the display and responses to an alert by using built-in subprograms. Alerts are

therefore managed in two stages:

• Create the alert at design-time, and define its properties in the Property palette.

• Activate the alert at run time by using built-ins, and take action based on the operator’s

returned response.

 Create an Alert

Like other objects you create at design-time, alerts are created from the Object Navigator.

1. Select the Alerts node in the Navigator, and then select Create.

2. Define the properties of the alert in the Property Palette.

Here are the properties that are specific to an alert. This is an abridged list.

RDBMS Concepts and Orcale 8i

445

Property Description

Name Name for this object

Title Alert title

Alert Style Defines the symbol that accompanies message:

Stop, Caution, or Note

Button1, Button2,

Button3

Labels for each of the three possible buttons (Null indicates that

the button is not required.)

Default Alert Button Button 1, Button 2, or Button 3

Message Message that will appear in the alert

(maximum 200 characters)

 Planning Alerts: How Many Do You Need?

Potentially, you can create an alert for every separate alert message that you need to display,

but this is usually unnecessary.

You can define a message for an alert at run time, before it is displayed to the operator. This

means that a single alert can be used for displaying many messages, providing that the

available buttons are suitable for responding to each of these messages.

Create an alert for each combination of:

 Alert style required

 Set of available buttons (and labels) for operator response

For example, an application might require on e Note-style alert with a single button (OK) for

acknowledgment, one Caution alert with a similar button, and two Stop alerts that each

provide a different combination of buttons for a reply. You can then assign a message to the

appropriate alert before its display, through the SET_ALERT_PROPERTY built-in

procedure.

 Controlling Alerts at Run Time

There are built-in subprograms to change an alert message, to change alert button labels, and

to display the alert, which returns the operator’s response to the calling trigger.

RDBMS Concepts and Orcale 8i

446

 SET_ALERT_PROPERTY Procedure

Use this built-in to change the message that is currently assigned to an alert. At form starup,

the default message (as defined in the Property palette) is initially assigned:

 SET_ALERT_PROPERTY (‘alert_name’, property, ‘message’)

Parameter Description

Alert_name The name of the alert, as defined in the Designer (You can alternatively

specify an alert_id (unquoted) for this argument.)

Property The property being set (Use ALERT_MESSAGE_TEXT when defining a

new message for the alert.)

Message The character string that defines the message(You can give a character

expression instead of a simple quoted string, if required.)

SET_ALERT_BUTTON_PROPERTY Procedure

Use this built-in to change the label on one of the alert buttons:

SET_ALERT_BUTTON_PROPERTY (‘alert_name’, button, property, ‘value’)

Parameter Description

Alter_name The name of the art, as defined in the Designer (You can

alternatively specify an alert_id (unquoted) for this argument.)

Button The number that specifies the alter button (Use ALERT_BUTTON1,

ALERT_BUTTON2, ALERT_BUTTON3 constants.)

Property The property being; use LABEL

Value The character string that defines the label.

 SHOW_ALERT Function

SHOW_ALERT is how you display an alert at run time, and return the operator’s response to

the calling trigger:

Selected_button := SHOW_ALERT (‘alert_name’);

RDBMS Concepts and Orcale 8i

447

Alert_Name is the name of the alert, as defined in the builder. You can alternatively specify an

Alert_Id (unquoted) for this argument.

SHOW_ALERT returns a NUMBER constant, that indicated which of the three possible

buttons the user pressed in response to the alert. These numbers correspond to the values of

three PL/SQL constants, which are predefined by the Form Builder:

If the number equals… The Operator selected is…

ALERT_BUTTON1 Button 1

ALERT_BUTTON2 Button 2

ALERT_BUTTON3 Button 3

After displaying an alert that has more than one button, you can determine which button the

operator pressed by comparing the returned value against the corresponding constants.

 Example

A trigger that fires when the user attempts to delete a record might invoke the alert, shown

opposite, to obtain confirmation. If the operator selects Yes, then the DELETE_RECORD built-

in is called to delete the current record from the block.

 IF SHOW_ALERT (‘del_check’) = ALERT_BUTTON1 THEN

 DELETE_RECORD;

 END IF;

 Directing Errors to an Alert

You may want to display errors automatically in an alert, through an On-Error trigger. The

built-in functions that return error information, such as ERROR_TEXT.can be used in the

SET_ALERT_PROPERTY procedure, to construct the alert message for display.

 Example

RDBMS Concepts and Orcale 8i

448

The following user-named procedure can be called when the last form action was

unsuccessful. The procedure fails the calling trigger and displays Error_Alert containing the

error information.

 PROCEDURE alert_on_failure IS

 n NUMBER;

 BEGIN

 SET_ALERT_PROPERTY (

 ‘error_alert’,

 ALERT_MESSAGE_TEXT,

 ERROR_TYPE / / ‘-‘ / / TO_CHAR (ERROR_CODE)/ / ‘:’ / /

 ERROR_TEXT);

 n := SHOW_ALERT (‘error_alert’);

 END;

Alerts are an alternative method for communicating with the operator. Because they display

in a modal window, alerts provide an effective way of drawing attention and forcing the

operator to answer the message before processing can continue.

Use alerts when you need to do the following:

 Setting alert properties at runtime

An alert may have to be displayed when the exit button on the data entry form is clicked. The

functionality of this alert is the same as all other alerts except the alert title and the message in

the alert box must be different.

Instead of having two separate alerts, one for delete and one for exit. Oracle forms allows

these properties to be set at runtime. The title and the message can be changed depending on

the button that is pressed allowing the use of one alert object to deal with multiple situations.

The following are the steps to achieve this.

1. Open the product form in the forms builder. Locate the node labeled alerts and click on

navigator..Create

2. In the properties window, set the following properties:

RDBMS Concepts and Orcale 8i

449

Name : CONFIRM_ALERT

Alert style : Caution

Button 1 : Yes

Button 2 : No

Default Button : Button2

3. To display the alert the following trigger need to be added where it is required.

Trigger Name : WHEN-BUTTON-PRESSED From : Product

Function : button_palette item : pb_delete

Function : Display the alert message box before deleting a record.

Text : DECLARE
 Chk_button number;

 Begin

 Go_block(‘product_master’);

 set_alert_property(‘confirm_alert’,title,’Delete records’);

 set_alert_property(‘confirm_alert’,alert_message_text,

‘do you really want to delete the record?’);

 chk_button :=show_alert (‘alert_delete’);

 if chk_button = alert_button1 then

 delete_record;

 endif;

 END;

Trigger name : WHEN-BUTTON-PRESSED form :product

Block : button_palette

Function : Quit the product form.

Text : DECLARE
 Ans number;

 BEGIN

 If : system.form_status = ‘CHANGED’ then

 Set_alert_property(‘confirm_alert’,title,’save changes’);

 Set_alert_property(‘confirm_alert’,alert_message_text,

 ‘would you like to make changes permanent’);

 ans : = Show_alert(‘confirm_alert’);

 if ans = alert_button1 then

 commit_form;

 End if;

 End if;

 Exit_form(No_commit);

 END;

RDBMS Concepts and Orcale 8i

450

 24.6 Object Libraries

Object libraries are convenient containers of objects for reuse. They simplify reuse in complex

environments, and they support corporate, project, and personal standards.

An object library can contain simple objects, property classes, object groups, and program

units, but they are protected against change in the library. Objects can be used as standards

(classes) for other objects.

Object libraries simplify the sharing of reusable components. Reusing components enables

you to:

• Apply standards to simple objects, such as buttons and items, for a consistent look and

feel

• Reuse complex objects such as a Navigator

In combination with SmartClasses, which are discussed later, object libraries support both of

these requirements.

Note: Form Builder opens all libraries that were open when you last closed Form Builder

 Why Object Libraries Instead of Object Groups?

• Object libraries can contain individual items; for example, iconic buttons. The smallest

unit accepted in an object group is a block.

• Object libraries accept PL/SQL program units.

• If you change an object in an object library, all forms that contain the subclassed object

reflect the change.

Creating an Object Group

An object group is a logical container for a set of Form Builder objects.

You define an object group when you want to package related objects for copying or

subclassing in another module. You can use object groups to bundle numerous objects into

higher-level building blocks that you can use again in another application.

RDBMS Concepts and Orcale 8i

 SmartClass

A SmartClass is a special member of an Object Library. Unlike other Object Library members,

it can be used to subclass existing objects in a form using a SmartClass option from the right

mouse button popup menu. Object Library members which are not SmartClasses can only be

used to create new objects in form modules into which they are added.

If you frequently use certain objects as standards, such as standard buttons, date items, and

alerts, you can mark them as SmartClasses by selecting each object in the object library and

choosing

Object SmartClass.

You can mark many different objects that are spread across multiple object libraries as

SmartClasses.

You can also have many SmartClasses of a given object type; for example:

• Wide_Button

• Narrow_Button

• Small_Iconic_Button

• Large_Iconic_Button

 Work with SmartClasses

1. Select an object in the Layout Editor or Navigator.

2. From the pop-up menu, select SmartClasses. The SmartClasses pop-up menu lists all the

SmartClasses from all open object libraries that have the same type as the object. When

you select a class for the object, it becomes the parent class of the object. You can see its

details in the Subclass Information dialog box, just like any other subclassed object.

This mechanism makes it very easy to apply classes to existing objects.

451

RDBMS Concepts and Orcale 8i

24.7 Editors

With a text editor enabled the user can view multiple lines of a text item simultaneously,

search and replace text in it, and generally modify the value of an item from this separate

window.

You can use one of three editors at run time:

 Form Builder default editor

 User-named default editor

 System editor

Every text item has the default editor available, but you can design your own replacement

editor for those items that have special requirements such as larger editing window, position,

color, and title.

By overriding the default editor for a text item, you can provide a larger editing window for

items with potentially large textual valued. Optionally, use an external system editor.

 Editor at Run Time

 With the cursor in the text item to be edited, follow these steps:

1. Press the (Edit) key, or select Edit Edit to invoke the attached editor.

2. Edit the text in the Editor window. Form Builder editors provide a Search button that

invokes an additional search-and-replace dialog box for manipulating text

3. Click OK to write your changes back to the text item.

24.8 Short Summary

 A property class is a named objects that containing a list of properties and they’re

setting.

 Forms provide a variety of methods for reusing onjects and code.

 Using property classes define standard properties for several objects at a time.

 Using object libraries enables drag and drop reuse and provides smart classes for

default objects.

452

RDBMS Concepts and Orcale 8i

453

 Display alerts with show_alert

 Change alert message with set_alert_property.

 Associate one of three types of alerts with a text item.

24.9 Brain Storm

1. What is an editor?

2. Explain about alerts?

3. Differentiate property classes and visual attributes?

4. Explain the types of library file formats

5. Hoe to create a library explain?

RDBMS Concepts and Oracle 8i

454

Lecture 25

Triggers

Objectives

After completing this lesson, you should be able to do the following

 Discuss about Master Detail Form

 Create a database and run a master detail form module

 Modify a data block by using the data block wizard

 Define triggers

 Identify the different triggers categories

 Describe the properties that affect the behaviour of a trigger

 Explain the effects of the validation unit upon a form

 Control validation by using triggers

RDBMS Concepts and Oracle 8i

455

Coverage Plan

Lecture 25

25.1 Snap shot

25.2 Master detail Relation

25.3 Master detail form

25.4 Triggers

25.5 Validations

25.6 Short summary

25.7 Brain Storm

RDBMS Concepts and Oracle 8i

456

25.1 Snap Shot

In this session we discuss about building a new form module by using the following methods

• Form builder wizards

• Manually

• Template form

Using the data block wizard to create a new data block with its associated data sources

quickly and easily.

25.2 Master Detail Relation

 What is a Relation?

A relation is a Form Builder object that handles the relationship between two associated

blocks.

You can create a relation either:

♣ Implicitly with a master-detail form module

♣ Explicitly in the Object Navigator

Implicit Relations

When you create a master-detail form module, a relation is automatically create. This relation

is named masterblock_detailblock, for example,S_ORD_S_ITEM.

 Explicit Relations

If a relation is not established when default blocks are created, you can create your own by

setting the properties in the New Relation dialog box. Like implicitly created relations,

PL/SQL program units and triggers are created automatically when you explicitly create a

relation.

RDBMS Concepts and Oracle 8i

457

 How to Create a Relation Explicitly

1. Select the master block entry in the Object Navigator

2. Click the Create icon.

 The New Relation window is displayed

3. Specify the name of the relation.

4. Specify the name of the master block.

5. Specify the name of the detail block.

6. Choose your master delete property.

7. Choose your coordination property

8. Specify the join condition.

9. Click OK.

The new relation, new triggers, and new program units are highlighted in the Object

Navigator.

 Modifying a Relation

You can alter the relation properties to affect the way deletes and block coordination are

handled.

 Master Deletes

You can prevent, propagate, or isolate deletion of a record in a master block when

corresponding records exist in the detail block by setting the Master Deletes property. For

example, you can delete all corresponding line items when an order is deleted.

Property Use

Non-Isolated Prevents the deletion of the master record when the

detail records exist

Cascading Deletes the detail records when a master record is

deleted

Isolated Deletes only the master record

RDBMS Concepts and Oracle 8i

When Happens When You Modify a Relation?

• Changing the Master Deletes property from the default of Non-Isolated to Cascading

replaces the On-Check-Delete-Master trigger with the Pre-Delete trigger.

• Changing the Master Deletes property from the default of Non-Isolated to Isolated results

in the removal of the On-Check-Delete-Master trigger.

 Types of Blocks

In Form Builder there are two main types of blocks data blocks and control blocks.

Data Blocks When you build database applications with From Builder, many of the blocks

will be data blocks. A data block is associated with a specific database table (or view), a

stored procedure, a FORM clause query, or transactional triggers.

If it is based on a table (or view) the data block can be based on only one base table, even

though the data block can b e programmed to access data from more than one table and data

sources. By default, the association between a data block and the database enables the user to

automatically access and manipulate data in the database. However, to access data from

other tables (non base table) you need to write triggers

458

RDBMS Concepts and Oracle 8i

• Creates items in the data block to correspond to columns in the table (there items are

data items or base table items)

• Produces code in the form to employ the rules of the table’s constraints

• Generates SQL at run time (implicit SQL) to insert update, delete, and query rows in the

base table, based table, based upon the user’s actions.

At run time, you can use standard function keys, buttons, menu options or standard toolbar

options to initiate query, insert, update, or delete operations on base tables and the

subsequent commit of the transaction.

 Table

 Master Data Blocks

 A B C D

 Detail Data Block

 X Y Z

2

3
4

5

6

A B C

X Y Z

1

 Table

1 Base table source

2 Single-record data block

3 Triggers access

4 Nonbase table source

5 Multirecord data block

6 record

Control Blocks A control block is not associated with a database and its items do not relate

to any columns within any database table. Its items are called control items. For example

459

RDBMS Concepts and Oracle 8i

you can create many buttons in your module to initiate certain actions and to logically group

these buttons in a control block.

Master Versus Detail Blocks

To support the relationship between data blocks and their underlying base tables, you can

define one data block as the detail (child) of a master (parent) data block. This links primary

key and foreign key values across data blocks, and synchronizes the data that these data

blocks display.

Form Builder automatically generates the objects and code needed to support master detail

relationships. As the designer, you need only request it.

Note: If your application requires it, you can also create imdependent dat blocks in which

there is no relationship between the two data blocks.

Single-Record Versus Multirecord Blocks

We can design a data block to show one record at a time(Single-Record block) or several

records at once(Multi record block).Usually ,we create a single –record data block to show

master block data and a multirecord data block to show detail block data. In either case,

records in a data block that are currently not visible on the screen are stored in a block buffer.

 From C
 Open Form

 Open From

 Single form From A From B

Block 1

Block 1

Block 2

Block 3

Block 1

Block 2

Block 1

Block 1 Block 4

 Module

Note

460

RDBMS Concepts and Oracle 8i

461

This slide illustrates multiple data blocks in a single form compared to the multiple form

application.

Many Blocks or Many Forms?

Typically, a Form Builder application consists of more than one data block.With more than

one data block. We can do the following

• Separate the navigation cycle of one group of items form another

• Map each data block to a different database table(We can have one databaseper data

block.)

• Produce a master-detail form,with a master data block and corresponding detail data

blocks that are related to the master.

We can create a large form module with many data blocks.Alternatively , we can create

several smaller form modules with fewer data blocks in each.

Generally ,a modular application with several smaller form modules has the following

characteristics:

• Modules are loaded only when their components are required, thus conserving memory.

• Maintenance can occur on one module without regenerating or loading the others.

• Forms can call upon one another, as required.

• Parallel development can be carried out by different team members on different

components

Here are some points to consider when grouping data blocks in the application:

Data Blocks in the Same

Form Module

Data Blocks in Different Form Modules

The data blocks can be

directly linked in master-

detail relationships.

The Data blocks cannot be linked by

the standard interblock relations.

RDBMS Concepts and Oracle 8i

462

Navigation between data

blocks is handled by default

functionality.

Navigation between data blocks of

different forms is programmed by the

designer(although mouse navigation

to visible items can be automatic).

25.3 Creating Master-Detail Form

Creating Data Blocks with Relationships

 A form module can contain one or more data blocks. Each data block can stand alone or be

related to another data block.

Master-Detail Relationship

A master detail relationship is an association between two data block that reflects a primary

foreign key relationship between the database tables on which the two data blocks are based.

The master data block is based on the table with the primary key, and the detail data block is

based on the table with the foreign key. A master-detail relationship equates to the one to

many relationship in the entity relationship diagram.

A Detail Block Can Be a Master

You can create block relationships in which the detail of one master detail link is the master

for another link.

A Master Block Can Have More Details

You can create more than one detail blocks for a master block.

Note : The following are examples of the master detail structure:

• Master –detail : Order-items

• Master-detail-detail : Customer-order-items

• Master-2 * detail : Customer-order and customer-shipping contacts

RDBMS Concepts and Oracle 8i

Master

Detail

Master

Detail

Detail

 Master

Detail Detail

Creating a master-detail form module with the data block wizard

You can build a master-detail form modules either by creating a relation between a master

and detail block explicitly, or by using the data block wizard.

1. Create the master block as described earlier in this lesson.

2. Invoke the data block wizard in the Object navigator.

3. Follow the same steps as before to create a new data block in the data select the “auto-join

data blocks” checkbox and click Create relationship.

Note : if the “auto-join data blocks “ check box is clear, the data block dialog is displayed

with a list of all data blocks in the form without any foreign key constraint

names.

4. Select a master data block in the Data Block dialog and click OK. The wizard

automatically creates the join condition between the detail and master data blocks in the

463

RDBMS Concepts and Oracle 8i

464

join Condition field and displays the name of the master data block in the Master Data

Blocks field.

Note : If the “Auto-join data blocks check box is clear, the wizard does not automatically

create the join condition between the detail and master data blocks. You must

use the Detail Item and Master Item pop-up lists to create a join condition

manually.

5. Click Next and finish the Data Block Wizard steps. Go through the Layout wizard steps

as described earlier in this lesson to finish creating and laying out the detail data block.

Note: The master data block must exist in the form module before you create the detail

block.

New Relation

Once you create a master-detail form module, the Data Block Wizard automatically creates a

form object that handles the relationship between two associated data blocks. This objects is

called a relation. The following tasks occur automatically.

• The new relation object is created under the master data block node in the Object

Navigator with default properties.

• The relation is given the following default name:

• Master Data Block_Detail Block for example ORDER_ITEM

• Triggers and program units are generated to maintain coordination between the tow data

blocks.

25.4 Triggers

Event Driven PL/SQL code has to be written to add functionality to each push button placed

on the form. The code is executed based on a specific event occurring with respect to the push

buttons, generally when the push buttons are pressed.

RDBMS Concepts and Oracle 8i

465

Event Driven Programming:

An ‘Event’ that gets executed at a specific moment in time is a ‘Trigger’. Triggers are named

and built-into form items. PL/SQL code blocks when attached to these events are executed

when the event(trigger) occurs.

If no PL/SQL code is attached to a trigger, the trigger will fire but no processing of any kind

will take place. If PL/SQL code is attached to an event (trigger) when the event occurs the

PL/SQL code executes and whatever processing is specified in the code block is carried out.

An Oracle Form Item and is appropriate trigger name must be selected. For example, when

push button pb_view is clicked, a trigger named ‘When-button-pressed’ is fired. PL/SQL code

i.e. execute_query is written in this trigger using which a call to the underlying base table is

made and the records of the base table are displayed on the form.

Type of Triggers based on the User action or programmatic control:

When selecting triggers, it is important to understand precisely when triggers fire, both in

relation to other triggers, and in relation to form processing. It is necessary to identify the

type of trigger. Form triggers can be categorized into the following basic types:

Interface Triggers:

Triggers associated with user interface objects are called Interface triggers. Some of these

triggers fire only in response to operator input or manipulation. Others can fire in response to

both operator input and programmatic control. Interface triggers can be further classified

into:

 Key Triggers

 Action Triggers associated with User objects

 Mouse Triggers.

Key Triggers:

Example:

RDBMS Concepts and Oracle 8i

466

Trigger Name Key

Key-Next-Item Tab or Enter

Key-ExeQry F8

Key-NxtBlk Shift F5

Key-Commit F10

Action Triggers associated with user objects:

Triggers that get executed due to user interaction are called Action Triggers. Action triggers

are associated with specific objects. The examples of action triggers are:

Example:

Trigger Name Action

When-Button-Pressed Pressing a button

When-CheckBox-Changed Clicking a check box

When-Image-Pressed Clicking the image

When-List-Changed A List Item is selected

When-Radio-Changed Clicking On a Radio Button

When-Window-Activated When focus is on a specific

Windows

When-Window-Closed When a window is closed

Mouse Triggers:

The triggers associated with the Mouse Action are called Mouse Triggers. The Examples of

Mouse Triggers are as follows:

Example:

Trigger Name Mouse Action

When-Mouse-Click Left Click with the Mouse button

When-Mouse-DoubleClick Double Click with Left Mouse button.

RDBMS Concepts and Oracle 8i

467

When-Mouse-Enter When Mouse Cursor Enters in a user

Object.

When-Mouse-Leave When Mouse Cursor is moved out of a

user Object.

When-Mouse-Move When the Mouse Cursor is Moved

within an Object.

Navigational Triggers:

Navigational triggers fire in response to navigational events. When the operator clicks on a

text item in another block, navigational events occur as Oracle Forms Builder moves its focus

from the current item to the target item.

For example when the cursor navigates out of a text item to another text item the Post-Text-

Item trigger for the current text item and Pre-Text-Item trigger for the next text item it moves

to will both fire in sequence.

Navigational events occur at different levels in the Oracle Forms Builder object hierarchy

(Form, Block, Record and Item). Navigational triggers can be further sub-divided into two

categories:

• Pre- and Post- triggers

• When-New-Instance triggers

Pre- and Post- Triggers:

• Pre- and Post- triggers fire as Oracle Forms Builder cursor navigates internally through

different levels of the object hierarchy. These c. by an operator, such as pressing <Tab>,

<Shift><Tab> or a mouse click.

• Cursor Navigation initiated programmatically by using Oracle’s built-in procedures like

Go-Item, Go-Block etc.

• Internal navigation that Oracle Forms Builder automatically performs during default

processing. Oracle’s Internal navigation:

RDBMS Concepts and Oracle 8i

468

• from one record to another

• from one block to another

• is initiated if records for different blocks in a form are saved using the commit key sequence

or by programmatic control like commit_form.

When-New-Instance-Triggers:

When-New-Instance triggers fires after the form’s focus is positioned on a given form, block

or item.

To know when these triggers fire, there is a need to understand the Oracle Forms Builder

processing model.

Consider a form named ‘Product’, with a block named product_master with text items

associated with the columns of product_master table.

As soon as the form is opened in memory, a series of navigational triggers are executed. The

sequence of triggers that fire when a form is invoked are as follows:

Sequence Trigger Name Remarks

1. Pre-Form The first Navigational trigger that gets executed. This

trigger gets executed even before the form is

displayed to the user.

2. Pre-Block This triggers fires while entering the block and also

during navigation from one block to another.

3. Pre-Record This triggers fires for the first time before entering

the first record in the first block on the form.

Subsequently it fires before navigation to any item in

that block.

4. Pre-Text-Item This triggers fires for the first time before entering

the first enterable item in the first block on the form.

Subsequently it fires before navigation to any item in

that block.

RDBMS Concepts and Oracle 8i

469

5. When-New-Form-

Instance

This trigger fires after the cursor is positioned on the

first itemof the block and also during navigation

from one block to another.

6. When-New-Block-

Instance

This triggers fires after the cursor is positioned on the

first item of the block and also during navigation

from one block to another.

7. When-new-record-

instance

This trigger fires when the forms focus changes from

one record to the other.

8. When-New-Item-

Instance

This triggers fires after the cursor is positioned on the

any item on the form and also during navigation

from one item to another.

The sequence of triggers that fire when a form is closed are as follows:

Sequence Trigger Name Remarks

1. Post-text-item This triggers fires after leaving

the current item.

2. Post-Record This triggers fires after leaving

the current record.

3. Post-Block This triggers fires after leaving

the current block.

4. Post-Form This triggers fires just before

exiting the form.

Smart Triggers:

Each object in the object navigator, has a set of events (triggers) associated with it. Oracle

Forms Builder provides a list of pre-defined triggers for the form, block or specific item.

Oracle Forms Builder shows a list of triggers attached to a specific object. When Triggers are

classified on the basis of the object, they are termed as Smart Triggers.

Example of ‘Smart Triggers’:

The triggers associated with push button Item are:

 When-New-Item-Instance

RDBMS Concepts and Oracle 8i

470

 When-Button-Pressed.

Writing Trigger PL/SQL code blocks:

The steps for writing PL/SQL code blocks for triggers are as follows:

1. Select the object for which trigger code is to be written in the Object Navigator and

right click. A popup menu is displayed.

2. Click on Smart Trigger in the popup menu. It displays a list of triggers to select from

that are connected to the selected object as shown in below diagram.

3. Select a trigger from the list provided. Oracle Forms Builder displays the PL/SQL

Editor where PL/SQL Editor where PL/SQL code blocks can be written as shown in

below diagram. In the current example the PL/SQL block of code that makes the

‘View’ button functional must be written.

Right click on push button pn_view to see a list of triggers associated with the push button

item.

From the list displayed select the ‘When-Button-Pressed’ trigger. The PL/SQL Editor will

display the following details and allow creation of suitable PL/SQL blocks.

Type : Trigger

Object : pb_view in block Button_Palette

Name : When-button-pressed

4. Type in appropriate PL/SQL code in the text area of the PL/SQL Editor tool. The

Completed When-Button-Pressed trigger code attached to button_palette and the item

pb-view is displayed in below diagram.

25.5 Validations

RDBMS Concepts and Oracle 8i

471

Form Builder performs a validation process at several levels to ensure that records and

individual values follow appropriate rules. If validation fails, then control is passed back to

the appropriate level, so that the operator can make corrections. Validation occurs at:

• Item level: Form Builder records a status for each item to determine whether it is

currently valid. If an item has been changed and is not yet marked as valid, then Form

Builder first performs standard validation checks to ensure that the value conforms to the

item’s properties. These checks are carried out before firing any When-Validate-Item

triggers that you have defined. Standard checks include the following:

- Format mask

- Required (if so, then is the item null?)

- Data type

- Range (Lowest-Highest Allowed Value)

- Validate from List

• Record level: After leaving a record, Form Builder checks to see whether the record is

valid. If not, then the status of each item in the record is checked, and a When-Validate-

Record trigger is then fired, if present. When the record passes these checks, it is set to

valid.

• Block and form level: At block or form level, all records below that level are validated.

For example, if you commit (save) changes in the form, then all records in the form are

validated, unless you have suppressed this action.

When Does Validation Occur?

Form Builder carries out validation for the validation unit under the following conditions:

 The [Enter] key is (ENTER command is not necessary mapped to the key that is

physically labeled Enter) pressed or the ENTER built-in procedure is run (whose

purpose is to force validation immediately).

 The operator or a trigger navigates out of the validation unit. This includes when

changes are committed. The default validation unit is item, but can also be set to record,

block, or form by the designer. The validation unit is discussed in the next section.

RDBMS Concepts and Oracle 8i

472

The Validation Unit

The validation unit defines the maximum amount of data an operator can enter in the form

before Form Builder initiates validation. Validation unit is a property of the form module,

and it can be set in the Property Palette to any of the following:

 Default

 Item

 Record

 Block

 Form

The default setting is item level. The default setting is usually chosen.

In practice, an item-level validation unit means that Form Builder validates changes when an

operator navigates out of a changed item. This way, standard validation checks and firing the

When-Validate-Item trigger of that item can be done immediately. As a result, operators are

aware of validation failure as soon as they attempt to leave the item.

At higher validation units (record, block, or form level), the above checks are postponed until

navigation moves out of that unit. All outstanding items and are validated together,

including the firing of When-Validate-Item and When-Validate-Record triggers.

You might set a validation unit above item level under one of the following conditions:

 Validation involves database references, and you want to postpone traffic until the

operator has completed a record (record level).

 The application runs in a block-mode environment (block level).

When-Validate-Item Trigger

You have already used this trigger to add item-level validation. The trigger fires after

standard item validation, and input focus is returned to the item if the trigger fails.

Example

RDBMS Concepts and Oracle 8i

473

This When-Validate-Item trigger on :S_ORD.date_ordered ensures that the Order Date is not

later than the current (database)date:

 IF : S_ORD.date_ordered > SYSDATE THEN

 MESSAGE (‘Order Date is later than today!’);

 RAISE form_trigger_failure;

 END IF;

When-Validate-Record Trigger

This trigger fires after standard record-level validation, when the operator has left a new or

changed record. Because Form Builder has already checked that required items for the record

are valid, you can use this trigger to perform additional checks that may involve more than

one of the record’s items, in the order they were entered.

When-Validate-Record must be defined at block level or above.

Example

The When-Validate-Record trigger on block S_ORD ensures that orders cannot be shipped

before they are ordered.

 IF : S_ORD.date_shipped < : S_ORD.date_ordered THEN

 MESSAGE(‘Ship Date is before Order Date!’);

 RAISE form_trigger_failure;

 END IF;

25.6 Short Summary

 Validation occurs at three levels

♣ Item level to ensure that the value conforms to the item properties

♣ Record level to ensure that the record is valid

♣ Block and form level to ensure that the all records below the level is validated.

� Standard validation occurs before trigger validation

RDBMS Concepts and Oracle 8i

474

� Triggers are event activated program units triggers type defines the event that fires the

trigger.

� Creating data block with a master detail relationship.

25.7 Brain Storm

1. What are triggers?

2. Explain the types of triggers?

3. Why we need validations?

4. How to create master detail form?

5. What are the three important levels of validations?

RDBMS Concepts and Oracle8i

475

Lecture 26

List of Values

Objectives

After completing this lesson, you should be able to do the following

 Discuss about Working with LOV objects

 Describe the Using Multiple canvases

 Describe about Types of Canvas

 Describe about Object Groups

 Discuss about Parameters

 Describe about Record Groups

RDBMS Concepts and Oracle8i

476

Coverage Plan

Lecture 26

26.1 Snap shot

26.2 Working with LOV objects

26.3 Using multiple canvases

26.4 Types of canvas

26.5 Object groups

26.6 Parameters

26.7 Record groups

26.8 Short summary

26.9 Brain Storm

RDBMS Concepts and Oracle8i

477

26.1 Snap Shot

In this session we discuss the following details

♠ Describe LOVs and editors

♠ Design, create, and associate LOVs with text items in a form module.

♠ Create editors and associate them with text items in a form module.

♠ Describe windows and content canvases

♠ Describe the relationship between windows and content canvases

26.2 Working with LOV objects

What Are LOVs and Editors?

 Lists of Values (LOV) and editors are objects in a form module that each opens their own

window when activated at run time. They are defined at the form level, which means you can

use them to support text items in any block of the form module.

LOVs

An LOV is a scrollable pop-up window that provides a user with a simple mechanism to pick

the value of an item from a multicolumn dynamic list. The user can reduce the lines displayed

in the list by simple automatic reduction techniques, or by search strings.

Each line in an LOV can present several field values, with column headings above. You can

design your LOV to retrieve some or all of the field values from the line chosen by the user,

and place them into form items or variables.

LOVs have the following qualities:

 Dynamic: The list entries can change to reflect changes in the source data.

 Independent: The designer can invoke an LOV from any text item, or from outside a text

item if called programmatically.

RDBMS Concepts and Oracle8i

 Flexible: You can use the same LOV to support several items, if appropriate (for example,

product_ID, product_name).

 Efficient: You can design LOVs to reuse data already loaded into the form, instead of

accessing the database for every call. This is useful where data is relatively static.

Editors

With a text editor enabled the user can view multiple lines of a text item Simultaneously,

search and replace text in it and generally modify the value of an item from this separate

window.

You can use one of three editors at run time:

 Form Builder default editor

 User-named editor

 System editor

Every text item has the default editor available, but you can design your own replacement

editor for those items that have special requirements such as larger editing window, position,

color, and title.

By overriding the default editor for a text item, you can provide a larger editing window for

items with potentially large textual values. Optionally, use an external system editor.

How to Use an Editor at Run Time

 1. Press the [Edit] key, or select Edit Edit to invoke the attached

 editor.

2. Edit the text in the Editor window. Form Builder editors provide a Search button that

invokes an additional search-and-replace dialog box for manipulating text.

3. Click OK to write your changes back to the text item.

 Designing an LOV

478

RDBMS Concepts and Oracle8i

When you build an LOV, consider the following objects:

• Record group: A Form Builder object that is used to store the array of values that are

presented by an LOV (The record group can be created first or as part of the LOV creation

process if based on a query)

• LOV: The list itself, which presents one or more column values from the supporting

record group in the LOV window (It enables the user to select values, and then write

values back to specified items or variables).

Text items : The main text item that you attach to an LOV is usually one that the LOV returns

a value to. You can call the LOV from this item to provide possible to attach it to these items

as well in your application.

In fact, you can attach the LOV to any text item from which the same list of values needs to be

viewed, whether or not it will receive a value.

Record Groups

A record group is a column-and-row structure stores within Forms Runtime memory and is

similar to the structure of a database table. It holds records that can be reused by Oracle

Developer applications, hence reducing repeated access to external data.

Record groups can be designed to contain static values. Alternatively, they can be populated

programmatically at run time or, most commonly, populated by a SQL query.

Record groups can provide the following:

479

RDBMS Concepts and Oracle8i

480

 Data that is presented by LOVs.

 Data for dynamic list items

 Data to be passed to Report Builder and Graphics Builder

 Other application-defined uses.

Creating an LOV

Select the LOVs node in the Object Navigator, and then click the Create icon. This opens the

New LOV dialog box, with the following elements:

Element Description

Data to be displayed in

this LOV (radio group)

Select from:

 Existing record group

 V2 style TABLE.COLUMN values

 New record group based on the query below

Select (Button) Use to see list of record groups, if LOV uses one that already

exists.

Query Text Multiline area where you enter SQL statement (Use this if a

query-based record group is to be created to support the

LOV.)

The Query Text

When you create a record group at the same time as the LOV (the default action), the new

record group will be query-based. That is, it will execute a SQL SELECT statement to

populate the group from the database.

The query text that you supply in the New LOV dialog box defines the following:

 The query on which the new record group will be based

 Optionally, the return items for values in the LOV (This can be defined through the INTO

clause, but you can supply this information more conveniently later)

The query text must include a SELECT and FROM clause. Optional clauses include the

following:

RDBMS Concepts and Oracle8i

481

 INTO

 WHERE

 GROUP BY

 ORDER BY

Query Text Example

The following query text sample displays sales people’s names. IDs, and departments from

the S_EMP table. (Department numbers are for display purposes only and are not returned

by the LOV)
 SELECT last_name, id, dept_id

 FROM s_emp

 WHERE title = ‘Sales Representative’

 ORDER BY last_name

Query Text Example

The following New LOV Query Text retrieves and displays the names and IDs of customers.

Receiving items will be defined for the LOV later.

 SELECT name, id

 FROM s_customer

 ORDER BY name

LOV Default Functionality

Once you create the new LOV, it displays in the Object Navigator. You will also see the

associated record group. The two objects initially have the same name, if they were created

together.

Note: To view the underlying SELECT statement, open the Property Palette of the associated

record group and examine the Record Group Query property value.

Setting LOV Properties

After you create an LOV, open its Property Palette to define its properties.

RDBMS Concepts and Oracle8i

482

Property Function

Title Specifies a title for the LOV

X Position and Y

Position

Screen coordinates for the LOV window in the current form

coordinate units (Choose a position that is suitable for the

items that the LOV supports)

Width and Height Size of the LOV window in the current form coordinate units

(The user can adjust this, but choose a size that is suitable for

the data)

Column Mapping

Properties (More…)

Opens the LOV Column Mapping window

Filter Before Display Determines whether users should be prompted with a dialog

box that enables them to enter a search value before the LOV

is invoked.

Automatic Display Determines whether the LOV should be invoked

automatically when the cursor enters an item to which the

LOV is attached.

Automatic Refresh When this property is set to Yes, the record group reexecutes

its query every time the LOV is invoked.

When this property is set to No, the record group query fires

only the first time the LOV is invoked within a user session.

Subsequent LOV calls use current record group data.

Automatic Select Determines whether the LOV should close and return values

automatically when reduced to a singly entry

Automatic Skip Determines whether the cursor skips to the next navigable

item when the operator selects a value from the LOV to

populate the text item.

Automatic Position Determines whether Form Builder automatically positions

the LOV near the field from which it was invoked.

Automatic Column

Width

Determines whether Form Builder automatically sets the

width of each column to display the entire column title when

the column title width is longer than he column display

width.

RDBMS Concepts and Oracle8i

483

Note: More than one LOV can be based on the same record group. When this is the case and

you set Automatic Refresh to No, Form Builder will not reexecute the LOV query once any of

the LOVs is invoked.

The Column Mapping Properties

When you click the More property control button for Column Mapping Properties, the LOV

Column Mapping dialog box opens.

Column Mapping

Element

Description

Column Names

(List)

Lets you select an LOV column for mapping or defining a

column

Return Item Specifies the name of the form item or variable to which Form

Builder should assign the column value. Use one of the

following:

 block_ name.item_name

 GLOBAL.variable_name

 PARAMETER.parameter_name

If null, the column value is not returned from LOV.

Display Width Width of column display in LOV(A 0 value causes the column to

be hidden, although its value remains available for return.)

Column Title Heading for column in LOV window.

To set a column mapping in this dialog, first select the column from the Column Names list,

then set the other mapping values, as required.

Note: The record group columns and LOV columns must remain compatible. You can modify

the record group query from its own properties list.

Associating an LOV with a Text Item

So that the user can invoke an LOV from a text item, you must specify the LOV name in the

Property Palette of the text item.

1. Select the text item in the Object Navigator from which the LOV is to be accessible.

RDBMS Concepts and Oracle8i

484

2. In the item Property Palette, set the List of Values property to the required LOV.

Remember that the List of Values lamp is displayed when the user navigates to this text item,

indicating that the LOV is available through the [List of Values] key or menu command.

Creating an LOV by Using the LOV Wizard

1. Launch the LOV Wizard.

2. The Welcome page is displayed. Click Next.

3. Specify the LOV source in the LOV Source page. Choose an existing record group or

create a new one based on a query. The New Record Group based on a query radio

button is set by default. Click Next to select the default.

4. In the SQL Query page specify the query used to construct the record group.

• Click the Build SQL Query button to use the Query Builder

• Click the Import SQL Query button to import a query from a file.

• To enter the query directly, type the SQL syntax in the SQL Query Statement field.

Then click the Check Syntax button.

5. In the Column Selection page, select the record columns that you want to include in the

LOV.

 Creating an LOV by Using the LOV Wizard (continued)

6. In the Column Properties page, specify the title, width and return value for each LOV

column. Note that the Return Value Into item is optional.

7. In the LOV Display page, specify the title, width, and height of the LOV window.

Creating an LOV by Using the LOV Wizard (continued)

8. In the Advanced Options page, set the additional advanced properties. Specify:

RDBMS Concepts and Oracle8i

485

• The number of records to be fetched from the database

• If the user should be presented with a dialog box to add criteria before the LOV is

displayed.

• If the LOV records should be queried each time the LOV is invoked.

9. In the Finish page, click Finish to complete the LOV creating process.

26.3 Using Multiple Canvases

Without Oracle Developer you can take advantage of the GUI environment by displaying a

form module across several canvases and in multiple windows. This lesson familiarizes you

with the window object and the default canvas type, the content canvas.

Windows and Content Canvases

With form Builder you can display an application in multiple windows by using its display

objects windows and canvases.

What is a Window?

A window is a container for all visual objects that make up a Form Builder application. It is

similar to an empty picture frame. The window manager provides the controls for the

window that enable such functionality as scrolling as scrolling, moving, and resizing. You

can minimize a window.

A single form may include several windows.

What is a Canvas?

A canvas is a surface inside a window container on which you place visual objects such as

interface items and graphics. It is similar to the canvas upon which a picture is painted. To

see a canvas and its content at run time you must display it in a window. A canvas always

displays in the window to which it is assigned.

RDBMS Concepts and Oracle8i

Note: Each item in a form must refer to no more than one canvas. An item displays on the

canvas to which it is assigned, through its Canvas property. Recall that if the Canvas

property for an item is left unspecified, that item is said to be a Null-canvas item and will not

display at runtime.

What is a Viewport?

A viewport is an attribute of a canvas. It is effectively the visible portion of, or view onto, the

canvas.

26.4 Types of Canvas

What is a Content Canvas ?

Form Builder offers different types of canvases. A content canvas is the base canvas that

occupies the entire content pane of the window in which it displays. The content canvas, is

the default canvas type. Most canvases are content canvases.

Displaying a Form Module in Multiple Windows

 When you create a new form module, Form Builder creates a new window implicitly. Thus,

each new form module has one predefined window, which is called WINDOW 1. You can

delete or rename Window1, or change its attributes.

Uses and Benefits of a New Window

You can create additional windows in which to display your form application. A new or

second window provides the ability to do the following:

486

RDBMS Concepts and Oracle8i

487

• Display two or more content canvases at once.

• Modularize the form contents

• Switch between canvases without replacing the initial one

• Take advantage of window manager functionality such as minimizing.

Window Types

 You can create two different window types ; modal and modeless.

• A modal window is a restricted window that the user must respond to before moving the

input focus to another window. Modal windows.

Must be dismissed before control can be returned to a modeless window. Become active as

soon as they display,

Require a means of exit or dismissal

• A modeless window is an unrestricted window that the user can exit freely. Modeless

windows:

Can display many at once

Are not necessarily active when displayed

 - Are the default window type

Physical Function

 X Position Determines the X coordinate for the window

Y Position Determines the Y coordinate for the windows

Width Determines the width of the window

Height Determines the height of the window

Bevel Determines how the window border displays

Show horizontal

Scrollbar

Determines whether a horizontal scroll bar displays in the

window

Show Vertical Scrollbar

Determines whether a vertical scroll bar displays in the

window

RDBMS Concepts and Oracle8i

488

Functional Property

Function

Tile Specifies a window title to appear in the title bar

Primary Canvas Specifies the name of the canvas to display in this window

when it is invoked programmatically

Window Style Determines whether the window style is document or

Dialog (Document style windows are fixed and always

remain within the application window frame. Dialog style

window are free floating and can be moved outside the

application window frame)

Modal Determines whether the window is modal (requires user

response)

Or modeless (does not require user response)

Hide on Exit Specifies whether a modeless window is hidden

automatically when the end user navigates to an item in

another window,.

Icon File name Specifies the icon resource name that depicts the

minimized window

Note : If you do not specify a window title, Form Builder uses the window object name

specified in the Name property for the title.

The canvas you choose as the primary canvas must be a content canvas.

The X and Y Position (0,0) of a window is relative to the top left corner of the screen when

you set the Window Style to dialog. If you set the Window is relative to the top left corner of

the screen when you set the Window Style to dialog. If you set the Window Style to

document, the X and Y Position (0,0) is relative to the top-left corner of the MDI window.

What Are GUI Hints?

GUI Hints are recommendations to the window manager about the window appearance and

functionality. There are certain properties under the Functional group that enable you to

RDBMS Concepts and Oracle8i

489

make these recommendations. If the current window manager supports the specific GUI

Hint property and it is set to Yes, then Form Builder uses it. However if the window manage

does not support the property, Form Builder ignores it.

Functional property

for GUI Hints

Function

Close Allowed Enables the mechanism for closing the window, as provided by

the window manager specific close command (From Builder

responds to user attempts to close the window by firing a WHEN

WINDOW CLOSED trigger to actually close it

Move Allowed Determines whether the user can move the window by using the

means provided by the window manager

Resize Allowed Determines whether the user can resize the window at run time

Maximize Allowed Determines whether the user can iconify and minimize the

window

Inherit Menu Determines whether the window displays the current form menu

Note : The Minimize Allowed property must be set to yes in order for Icon file name to be

valid

How to Create a New Window

1. Click the Windows node in the Object Navigator

2. click the create icon

3. a new window entry displays, with a default name of WINDOWXX.

4. If the property Palette is not already displayed, double click the window icon to the left

of the new window entry.

5. Set the window properties according to your requirements (as described in the tables,

earlier in this lesson)

Note: For you new window to display, you must specify its name in the Window property of

at least one canvas.

RDBMS Concepts and Oracle8i

490

Displaying a Form Module on Multiple Layouts

You can have more than one content canvas in your form application. However, remember

that only one content canvas can display in a window atone time. To display more than one

content canvas at the same time, you can assign each content canvas to a different window.

Now you can display the form module on multiple layouts or surfaces.

Creating a New Content Canvas implicitly

There are two ways of implicitly creating a new content canvas:

• Layout Wizard : When you use the Layout Wizard to arrange data block items on a

canvas, the wizard enables you to select a new canvas on its Canvas page. In this case,

the wizard creates a new canvas with a default name of CANVASSXX.

• Layout Editor : When there are no canvases in a form module and you invoke the Layout

Editor; form Builder creates a default canvas on which you can place items.

 Creating a New Content Canvas Explicitly

General property Function

Canvas Specifies the type of canvas (for a content

canvas, this property should be set to

Content)

Physical Property Function

Window Specifies the window in which the canvas

will be displayed

ViewPort X positior

or Canvas

Specifies the X coordinate of the top-left

corner of the view relative to the upper-left

corner of the canvas

RDBMS Concepts and Oracle8i

491

View port Y position

on Canvas

Specifies the Y coordinate of the top-left

corner of the view relative to the upper-left

corner of the canvas

Width Specifies the width of the canvas

Height Specifies the height of the canvas

Bevel Specifies a sculpted canvas border

 You can create a new content canvas explicitly by using the create icon

 in the Object Navigator.

Note: For a canvas to display at run time, its Window property must be specified.

 How to create a new content canvas

1. Click the Canvas node in the Object Navigator.

2. Click the Create icon.

A new canvas entry displays with a default name of a CANVASXX

3. If the property Palette is not already displayed, click the new canvas entry and select

Tools Property Palette.

4. Set the canvas properties that are described in the above tables according to your

requirements.

Note : Double-clicking the icon for a canvas in the Object Navigator will invoke the Layout

Editor instead of the Property Palette.

26.5 Object Groups

An object group is a container for a group of objects. You define an object group when you

want to package related objects so you can copy or reference them in another module.

Object groups provide a way to bundle objects into higher level building blocks that can be

used in other parts of an application and in subsequent development projects.

For example you might build an appointment scheduler in a form and then decide to make it

available from other forms in your applications. The scheduler would probably be build

RDBMS Concepts and Oracle8i

492

from several types of objects, including a window and canvas view, blocks, and items that

display dates and appointments, and triggers that contain the logic for scheduling and other

functionality. If you packaged these objects into an object group, you could then copy them

to any number of other forms in one simple operation.

You can create object groups in form and menu modules. Once you create an object group,

you can add and remove objects to it as desired.

To create an object groups

1. In the Object Navigator, position the cursor on the Object Groups node and choose

Navigator - Create

An object group with a default name is inserted under the node. when you double click to

expand the objects, the Object Group Children nod appears. Objects you add to the group

appear under this node.

2. In the Object Navigator, drag the desired object(s) under the Object Group Children node.

To remove objects from an object group;

In the Object Navigator, select theobject(s) you want to remove from the group and choose

Edit -- Cut, Edit- Clear, or Navigator - Delete.

Removing an object from and object group does not delete the object from the module

26.6 Parameters

Interlinking between forms can be achieved by opening required forms from the current form

and passing required information to the called form.

When opening related forms, in a commercial application it is appropriate that the mode of

operation in the called form and the calling form are the same.

Example:

RDBMS Concepts and Oracle8i

493

If the mode of operation in the client form is QUERY, the mode of operation in the order form

must also be QUERY and information regarding the sales orders placed by the current client

must be retrieved from the table.

Similarly, if the mode of operation in the client form is INSERT, the mode of operation in the

order form must also be INSERT and information pertaining to the current client must be set

by the system in INSERT mode.

Thus the mode of operation must be passed to the order form. The client_no associated with

the current client must also be passed to the order form. The client_no passed from the client

form can then be used to retrieve corresponding order information if the mode of operation is

QUERY. If the mode of operation is INSERT, client_no can be used to set the value of the text

item associated with the client_no column in the sales_order table.

Parameter values from a calling form can be passed to a called form, when any form is

invoked by using the OPEN_FORM or CALL_FORM procedures.

The basic steps in parameter passing are:

• Creating a list a parameters in the calling form and passing the list of parameters to the

called form using the OPEN_FORM or CALL_FORM procedure.

• Defining parameters in the called form and using them to accept values from the list of

parameters passed by the calling form.

• Referencing the values held in the parameters defined in the called form.

The steps in passing these parameters from a calling form to the called form are:

• Create a Parameter list object.

• Add parameters to the parameter list

• Pass the parameter list to the called form via the open_form () or the call_form () oracle

procedure.

Creating a Parameter List:

RDBMS Concepts and Oracle8i

494

A Built-in package procedure named CREATE_PARAMETER_LIST creates a parameter list

and returns the memory address.(i.e. specific location) of the parameter list. A variable of

type PARAMLIST must be declared to hold the memory address (i.e. a pointer) returned by

the function. The variable declaration is as follows:

DECLARE

 client_param_list paramlist:

Each parameter list created using CREATE_PARAMETER_LIST() must be assigned a unique

name. The parameter list name must be passed as an argument to the

CREATE_PARAMETER_LIST () procedure as explained below. A parameter list can then be

referenced by its ‘Name’ or the ‘Variable’ that holds the pointer to the parameter list.

Adding Parameters to a Parameter List:

A Built-in package procedure ADD_PARAEMETER adds parameters to the parameter list.

This procedure accepts the following parameters:

 Name of the parameter list.

 The Name of the parameter

 The Type of parameter

 The Value of the parameter

Types of Parameters:

Parameters added to the parameter list can be used to pass a single value to the called form.

Alternatively parameters can be used to pass a record group or a set of records to the called

form. The parameter type determines whether the parameter can hold a single value or can

hold a record group. The Parameters type can be any one of the following:

 TEXT_PARAEMTER

 DATA_PARAMETER

Text Parameter:

When a single value is passed as a parameter to the called form, the parameter type must be

set to ‘TEXT_PARAMETER’.

RDBMS Concepts and Oracle8i

495

Example:

When client_no ‘C00001’ is passed as a parameter form the client form to the order form the

Parameter Type, set for a parameter will be ‘TEXT_PARAMETER’.

Data Parameter:

When a record group is being passed as a parameter, the parameter type must be set to

‘DATA_PARAMETER’

Example:

Create a parameter list named client_list and assign the memory address of the parameter list

to a memory variable called client_param_list. Add a parameter named p_client_no and

specify its value as ‘C00001’. Since a single value is being passed as a parameter, the type of

parameter will be ‘TEXT_PARAMETER’.

 DECLARE

 client_param_list paramlist;

 BEGIN

 client_param_list := create_parameter_list

 (‘client_list’);

add_parameter (client_param_list, ‘p_client_no’, text_parameter, ‘C00001’);

END;

Passing the Parameter List to the Called Form:

After creating a parameter list and populating its parameters with appropriate values, the

form to which the parameters are to be passed must be opened. A form can be opened using

OPEN_FORM () or CALL_FORM () procedures. The name of the form must be passed as an

argument to any of these procedures as in

 OPEN_FORM (‘order.fmx’);

RDBMS Concepts and Oracle8i

496

The parameter list is to be passed as the last argument to the OPEN_FORM () or the

CALL_FORM () procedure. The name of the form is the only mandatory argument to any of

these procedures. To ensure that the last position is maintained, all other parameters,

normally optional to the OPEN_FORM() or the CALL_FORM () procedure become

mandatory. The values for these arguments are pre-defined by Oracle Forms and thus null

values are not allowed. The complete syntax for opening the form and passing parameter list

is:

CALL_FORM (‘form name’, display, switch menu, query mode, parameter list);

The arguments specified in the CALL_FORM () procedure are as follows:

Display:

This argument can be set to HIDE or NO_HIDE. If this argument is set to HIDE, the calling

form will be made invisible before calling the called form. If this argument is set to

NO_HIDE, the called form will be opened without hiding the calling form.

Switch Menu:

This argument can be set to NO_REPLACE or DO_REPLACE. If this argument is set to

NO_REPLACE, the menu of the called form will not be replaced with the menu of the calling

form. If this argument is set to DO_REPLACE, the menu of the called form will be replaced

with the menu of the calling form.

This argument can be set to NO_REPLACE or DO_REPLACE. If this argument is set to

NO_REPLACE, the menu of the called form will not be replaced with the menu of the calling

form. If this argument is set to DO_REPLACE, the menu of the called form will be replaced

with the menu of the calling form.

Query Mode:

This argument can be set to NO_QUERY_ONLY or QUERY_ONLY. If this argument is set to

Query_ONLY, the called form is opened for query purpose only. If this argument is set to

NO_QUERY_ONLY, the called form can be used for data insertion, updation, deletion and

viewing.

RDBMS Concepts and Oracle8i

497

Parameter List:

This argument must be set to the name of the parameter list created using

CREATE_PARAMETER () function.

Along with the above-mentioned arguments, if the called form and the calling form use

PL/SQL libraries, an additional parameter called Data Mode can be specified.

Data Mode:

If the called form and the calling form share the same set of libraries by default, the form

runtime tool loads multiple copies of the library file i.e. one copy for every form. Thus, the

memory resources of the system are inefficiently used. If same set of libraries are attached to

the called form and the calling form, the Data Mode argument can be set to

SHARE_LIBRARY_DATA. This ensures that only one copy of the PL/SQL library is loaded

and used by both the forms. The system resources are thus efficiently used.

If different set of libraries are attached the forms then the Data Mode argument can be set to

NO_SHARE_LIBRARY_DATA.

Defining Parameters in the Called Form:

Values passed by the calling form to the Called Form must be stored in special variables that

can be accessed by any PL/SQL code used in the Called Form. Variables that hold these

values passed from the Calling Form are called Parameters.

Each parameter has the following properties:

• Parameter Name

• Data Type

• Maximum Length

• Default Value.

These parameters can be created in the Parameters Node of the Called Form. The parameter

node is found in the Object Navigator in Forms Builder.

RDBMS Concepts and Oracle8i

498

26.7 Working With Record Groups

A record group is an internal Oracle Forms data structure that has a column / row

framework similar to a database table. However, unlike database tables, record groups are

separate objects that belongs to the form module in which they are defined.

A record group can have an unlimited number of columns of type CHAR, LONG, NUMBER,

or DATE provided that the total number of columns does not exceed 64 k..

A record group built from a query can store records from database tables much like a

database view, with the added advantage that the record group is local to Oracle Forms,

rather than existing in the database.

TYPES OF RECORD GROUPS

There are three of record groups: query record groups, static record groups, and non-query

groups.

Query Record A query record group is a record group that Group has an associated

SELECT statement. The columns in a query record group derive their default names, data

types, and lengths from the database columns referenced in the SELECT statement.

Non-query A non-query record group is a group that Record Group does not have an

associated query, but whose structure and values can be modified programmatically at

runtime.

Static Record A static record group is not associated with a Group query; rather, you define

its structure and row values at design time, and they remain fixed at runtime.

A record group can have a unlimited number of columns of type char, long, number or date.

When you a create an LOV, we can specify which of the columns in the underlying records

should be displayed in the LOV window. They will be displayed in the order that they occur

in the record group. Because LOV’s and record groups are separate objects, we can create

multiple LOV’s based on the same record group.

RDBMS Concepts and Oracle8i

499

Record Group Valued

The actual values in a record group come from one of two sources:

 The execution of a SELECT statement that you associated with the record group at

design time (query record group) an array of static values that you associated with the

record group at design time (static record group).

26.8 Short Summary

In this lesson, you should have learned:

♠ About the relationship between windows and content canvases

♠ How to create a new window

♠ How to create a new content canvas

♠ Describing windows and content canvases

♠ Creating a new window

♠ Creating a new content canvas

26.9 Brain Storm

a. Explain about List of values.

b. What are editors?

c. Explain the properties of LOVs.

d. How to create LOVs explain?

e. Explain the difference between windows and content canvas.

f. Explain the types of record groups

RDBMS Concepts and Oracle8i

500

Lecture 27

Canvases

Objectives

After completing this lesson, you should be able to do the following

 Discuss about the Stacked Canvas

 Discuss about the Tab Canvas

 Describe about the Horizontal Toolbar Canvas

 Discuss about the List Item

RDBMS Concepts and Oracle8i

501

Coverage Plan

Lecture 27

27.1 Snap shot

27.2 Stacked canvas

27.3 Tab canvas

27.4 Horizontal toolbar canvas

27.5 List item

27.6 Short summary

27.7 Brain Storm

RDBMS Concepts and Oracle8i

502

27.1 Snap Shot

 In addition to the content canvas, the Oracle Developer forms component enables you to

create three other canvases types. This lesson introduces you to the stacked canvas, which is

ideal for creating overlays in your application. It also introduces you to the toolbar canvas

and the tabbed canvas and the tabbed canvas, both of which enable you to provide a user-

friendly GUI application.

Canvases Overview

 Besides the content canvas, From Builder provides three other types of canvases which are:

• Stacked canvas

• Toolbar canvas

• Tab canvas

When you create a canvas, you specify its type by setting the Canvas Type property. The

type determines how the canvas how the canvas is displayed in the window to which it is

assigned.

27.2 Stacked Canvas

What is a Stacked Canvas?

 A stacked canvas is displayed on top of, or stacked on the content canvas assigned to a

window. It shares a window with a content canvas and any number of other stacked

canvases. Stacked canvases are usually smaller than the window in which they display.

 Determining the Size of s Stacked Canvas

Stacked canvases are typically smaller than the content canvas in the same window.

Determine the stacked canvas dimensions by setting width and Height properties. Determine

the stacked canvas views dimensions by setting Viewport Width and Viewport Height

properties.

RDBMS Concepts and Oracle8i

503

Uses and Benefits of stacked canvases

• Scrolling views as generated by Oracle Designer

• Creating an overlay effect within a single window

• Displaying headers that display constant information, such as company name

• Creating a cascading or a revealing effect within a single window

• Displaying additional information

• Displaying information conditionally

• Displaying context sensitive help

• Hiding information

Note: If a data block contains more items than the window can display, Form Builder scrolls

the window to display items outside the window frame. This can cause important items,

such as primary key values, to scroll out of view. By placing important items on a content

canvas, and placing the items that can be scrolled out of sight on a stacked canvas, the stacked

canvas becomes the scrolling region, rather than the window itself.

 Creating a stacked canvas

You can create a staked canvas in either of the following:

• object Navigator

• Layout Editor

Viewport property Function

View X Position

Specifies the X coordinate of the stacked canvas viewport

View Y Position

Specifies the Y coordinate of the stacked canvas viewport

View Width Specifies the width of the stacked canvas viewport

View height Specifies the height of the stacked canvas viewport

RDBMS Concepts and Oracle8i

504

Pysical Property Function

Show Horizontal Scrollbar Determines whether the stacked canvas displays a

horizontal scroll bar

Show Vertical Scrollbar Determines whether the stacked canvas displays a vertical

scrollbar.

How to Create a Stacked Canvas in the Object Navigator

1. Click the Canvases node in the Object Navigator.

2. Click the Create icon.

3. A new can vas entry displays with a default name of CANVASXX.

4. If the Property Palette is not already displayed, click the new canvas entry and select

Tools Property Palette.

5. Set the Canvas Type property to Stacked. Additionally, set the properties that are

described in the above table according to your requirements.

Note: To convert an existing content canvas to a stacked canvas, change its canvas Type

property value from content to stacked.

In order for the stacked canvas to display properly, make sure that its position in the stacking

order places it in front of the content canvas assigned to the same window. The stacking

order of canvases is defined by the sequence in which they appear in the Object navigator.

How to create a stacked canvas in the layout editor

1. In the Object Navigator, double click the object icon for the content Canvas on which you

wish to create a stacked canvas.

2. Click the Stacked Canvas tool in the toolbar.

3. Click and drag the mouse in the canvas where you want to position the tacked canvas.

RDBMS Concepts and Oracle8i

4. Open the Property Palette of the stacked canvas. Set the canvas properties according to

your requirements (described earlier in the lesson)

Displaying stacked canvases in the layout editor

You can display a staked canvas as it sits over the content canvas in the Layout Editor. Check

the display position of stacked canvass by doing the following.

1. Select View Stacked Views in the Layout Editor. The stacked/Tab Canvases dialog box is

displayed, with a list of all the stacked canvases assigned to the same window as the

current content canvas.

2. select the stacked canvases you want to display in the Layout editor.

Note : [control] + Click to clear a stacked canvas that was previously selected.

27.3 Tab Canvas

What is a tab canvas?

A tab canvas is a special type of canvas that enables you to organize and display related

information on separate tabs. Like stacked canvases, tab canvases are displayed on top of a

content canvas.

What is a Tab Page?

505

RDBMS Concepts and Oracle8i

506

A tab page is a sub-object of a tab canvas. Each tab canvas is made up of one or more tab

pages. A tab page displays a subset of the information in the entire tab canvas. Each tab page

has a labeled tab that end users can click to access information on the page.

Each tab page occupies an equal amount of space on the tab canvas.

Uses and Benefits of Tab Canvases

• Create an overlay effect within a single window.

• Display large amounts of information on a single canvas.

• Hide information.

• Easily access required information by clicking the tab.

Creating a Tab Canvas

• Create an empty tab canvas in either of the following:

 - Object Navigator

 - Layout Editor

Define one or more tab pages for the tab canvas.

Place items on the tab pages.

Tab Canvas Related Properties

Once you create a tab canvas and its tab pages, you must set the required properties for both

of these objects. Place items on a tab page by setting the required item properties.

Tab Canvas Property Function

Viewport X Position Specifies the X coordinate of the tab canvas upper-left corner.

Viewport Y Position Specifies the Y coordinate of the tab canvas upper-left corner

Viewport Width Specifies the width of the view for the tab canvas

Viewport Height Specifies the height of the view for the tab canvas.

Corner Style Specifies the shape of the labeled tabs on the tab canvas (Select

from Chamfered, Square, and Rounded)

Tab Attachment Edge Specifies the location where tabs are attached to the tab canvas.

RDBMS Concepts and Oracle8i

Tab Page Property Function

Label Specifies the text label that appears on the tab page’s tab at run

time.

Item Property Function

Canvas Specifies the tab canvas on which the item will be displayed

Tab Page Specifies the tab page on which the item will be displayed.

How to Create a Tab Canvas in the Object Navigator

1. Click the Canvases node in the Object Navigator.

2. Click the Create icon.

3. A new canvas entry displays

4. If the Property Palette is not already displayed, click the new canvas entry and select

Tools Property Palette.

5. Set the Canvas Type property to Tab. Additionally, set the canvas properties according to

your requirements.

6. Expand the canvas node in the Object Navigator.

7. The Tab Pages node displays.

8. Click the Create icon.

A tab page displays in the Object Navigator, with a default name of PAGEXX. The Property

Palette takes on its context.

9. Set the tab page properties according to your requirements.

10. Create additional tab pages by repeating steps 6 and 7.

How to Create a Tab Canvas in the Layout Editor

1. In the Object Navigator, double-click the object icon for the content canvas on which you

want to create a tab canvas.

The Layout Editor displays.

2. Click the Tab Canvas tool in the toolbar.

507

RDBMS Concepts and Oracle8i

3. Click the drag the mouse in the canvas where you want to position the tab canvas.

Form Builder creates a tab canvas with two tab pages by default.

4. Open the Property Palette of the tab canvas. Set the canvas properties according to your

requirements.

5. Create additional tab pages, if required, in the Object Navigator.

6. Set the tab page properties according to your requirements.

Placing Items on a Tab Page

Once you create a tab canvas and related tab pages, you must place individual items on the

tab pages that the end users can interact with at run time. To accomplish this, do the

following:

• Open the Property Palette of the item

• Set the item’s Canvas and Tab Page properties of the item to the desired tab canvas and

tab page.

Note: Display the tab canvas as it sits on top of the content canvas, by selecting View

Stacked View in the Layout Editor.

27.4 Toolbar Canvas

What is a toolbar canvas?

 A toolbar canvas is a special type of canvas that you can create to hold buttons and other

frequently used GUI elements.

 The Three Toolbar Types

• Vertical toolbar: Use a vertical toolbar to position all your tool items down the left or

right hand side of your window

508

RDBMS Concepts and Oracle8i

509

• Horizontal toolbar: use a horizontal toolbar to position all your tool items and controls

across the top or bottom of your window.

• MDI toolbar : Use an MDI toolbar to avoid creating more than one toolbar for a From

Builder application that uses multiple windows.

Uses and Benefits of Toolbars

• Provide a standard look and feel across canvases displayed in the same window

• Decrease form module maintenance time.

• Increase application usability

• Create applications similar to other used in the same environment

• Provide an alternative to menu or function key driven applications

Toolbar Related properties

Once you create a toolbar canvas, you must set its required properties as well as the required

properties of the associated window. For MDI toolbars, you must set the required form

module properties.

Canvas property Function

Canvas Type Specifies the type of canvas; for a toolbar

canvas, set to Horizontal Toolbar or vertical

Toolbar

Window Specifies which window the toolbar displays in

Width Determines the width of the toolbar

Height Determines the height of the toolbar

Window property Function

Horizontal Toolbar

canvas/vertical

Toolbar canvas

Identifies the horizontal / vertical toolbar to

display in this window

RDBMS Concepts and Oracle8i

Form Module

Property

Function

Form horizontal

toolbar canvas/form

vertical toolbar

canvas

Identifies the horizontal / vertical toolbar to

display in the MDI window

How to create a toolbar canvas

1. Create a new canvas in the Object Navigator

2. If the property palette is not already displayed, click the new canvas entry and select

tools property palette.

3. Set the canvas properties that are described in the above table.

4. In the object navigator select one of the following:

• The window in which you want to display the toolbar (for a form window toolbar)

• The Form module (for and MDI Toolbar)

• Set the Horizontal / Vertical Toolbar Canvas properties

• Add GUI elements boilerplate text, and graphics, as required.

Note: The width of a horizontal toolbar is set to the width of the window (for example,

content canvas). Like wise the height of a vertical toolbar is set to the height of the window

510

RDBMS Concepts and Oracle8i

511

27.5 List Item

What is a list item?

A list item is an interface object that displays a predefined set of choices, each corresponding

to a specific data value. You use the list item at run time to select a single value. List choices

or elements are mutually exclusive one and only one can be selected at a time.

The three List Item Styles

List Style Description

Poplist Appears as field with an iconic button attached to the right side (when

you click a poplist, all its list elements are displayed

Tlist Appears as a rectangular box that displays the list elements (when the

display area is not big enough to display all the list elements, a scroll bar

is automatically attached to the right side to view the remaining list

elements.

Combo box Appears as a field with a down arrow next to its right side (use the

button to display all the combo box list elements. The combo box

accepts user input)

Uses and Benefits of List Items

♣ Enable display of a defined set of choices

♣ Display a set of choices without using a vast area of canvas

♣ Provide an alternative to radio groups

♣ Provide a Windows-style list of values.

Setting the Value for a List item

The value for a list item can be set in any of the following ways;

• User selection

• User input (combo box style only)

• A default value

• Programmatic control

RDBMS Concepts and Oracle8i

512

Creating a List Item

A list item can be created in three way:

• Converting an existing item

• Using the List Item tool in the Layout editor

• Using the Create icon in the Object Navigator

Item properties specific to the list item

Property Function

Elements in List Opens list item elements dialog window(covered later in this

lesson)

List Style Specifies the display style of the list item (choose from poplist,

Tlist or combo box)

Mapping of other values Determines how other values are processed

Mouse Navigate Determines whether form builder navigates to the item and

moves input focus to it when the user activates the item with the

mouse

Note : The poplist and combo box take up less space, but end users must open them to see the

list elements. A Tlist remains open and end users can see multiple values at a time. Use the

attached scroll bar to see more values if the Tlist is not big enough to display all the list

elements.

The Elements in List Property

When you click the More property control button for the Elements in List property, the list

item elements dialog window opens.

Elements Description

List Elements Enables you enter the list elements as they appear at run time

List Item Value Enables you to specify the actual value that correspond to each of the list

elements.

RDBMS Concepts and Oracle8i

513

How to convert an existing item into a list item

You can convert an existing item into a list item by changing its item Type property to list

item and setting the relevant properties.

1. Invoke the Property Palette for the item that you want to convert.

2. Set the item type property to list item.

3. Select the elements in list property

4. Click more.

The list item elements dialog box appears

5. Enter the element that you want to appear in you list item in the list elements column

6. Enter the value for the currently selected list elements in the list item value field

7. Create additional list elements and values by repeating steps 5 and 6.

8. Click OK to accept and close the list item elements dialog box.

9. Set the other values property to do one of the following

- Reject values other than those predefined as list values

- Accept and default all other values to one of the predefined list element values

10. Enter an initial value for the list item.

How to create a list item in the Layout editor

You can also create a list item by using the list item tool in the layout editor.

1. Invoke the Layout Editor

2. Set the canvas and block to those on which you want the list item to be displayed

3. Select the list item tool.

4. Click the canvas in the position where you want the list item to be displayed.

5. Double-click the list item to invoke its property palette

6. Set the properties as required.

RDBMS Concepts and Oracle8i

514

 Null Values in a List item

If the base table column for a list item accepts NULL values, Form Builder creates a

pseudochoic in the list to represent the null.

All three list styles display a blank field if a query returns a NULL value. If the data required

property is set to Yes, upon activation list items display a blank element.

• A poplist displays a blank element for a NULL value.

• For Tlists, the user must scroll through to display the blank element.

• A combo box does not displays a blank element. The end user must delete the default

value if the default value is not NULL.

Handling other values in a list item

 If the base table column for a list item accepts values other than those associated with you list

elements, you must specify how you want to handle the values. Do this in one of the

following ways:

• Ignore other values by leaving the Mapping of Other Values property

• Associate the other values with one of the existing list elements (by naming either the list

element or its associated value) in the Mapping of Other Values property.

27.6 Short Summary

♣ List items to convert items that are mutually exclusive

♣ Describe the different types of canvases and their relationships to each other

♠ Identify the appropriate canvas type for different scenarios

♠ Create an overlay effect by using stacked canvas

♠ List item is an interface object that displays a predefined set of choices each

corresponding to specific data values.

RDBMS Concepts and Oracle8i

515

27.7 Brain Storm

• Explain the tab canvas.

• What is stacked canvas.

• What is viewport

• How to create a tab canvas explain.

• Explain the properties of list item.

RDBMS Concepts and Oracle8i

516

Lecture 28

Menus

Objectives

After completing this lesson, you should be able to do the following

 Discuss the Using Menu

 Discuss about saving compiling and attaching a menu module

 Describe about checked, enabled menu items

 Describe master detail menu

RDBMS Concepts and Oracle8i

517

Coverage Plan

Lecture 28

28.1 Snap shot

28.2 Using menu

28.3 Saving compiling and attaching

28.4 Checked, enabled menu items

28.5 Short summary

28.6 Brain Storm

RDBMS Concepts and Oracle8i

518

28.1 Snap Shot

In this session we discuss about menus. Every form runs with a default menu that is built into

every form or a custom menu that you define as a separate module and then attach to the form

for run time execution. At runtime, an application can have only one menu module active at a

time. Multiple form can share a same menu or each can invoke a different menu.

28.2 Using Menu

Every form runs with one of the following:

• The Default textual menu and a Default Toolbar menu built into the form

• A custom textual menu that the user defines as a separate module and then attaches to the

form for runtime execution. A custom toolbar created by the user.

At runtime, a form can have only one menu module active at a time, either the Default menu or a

custom menu.

The Default menu is part of the form module. Custom menu modules, however, are separate

from form modules. So, when an application, based on a single form that uses a custom menu is

delivered, following files must be provided:

• An .FMX form module.

• An .MMX menu module.

In a multi-form application, several form modules and several menu modules may be delivered

to a client. Multiple forms can share the same menu, or each form can invoke a different menu.

Using a Custom Menu

A Custom menu is built by creating a Menu Module in Forms Builder and then defining objects

for the menu.

A Menu Module includes different types of objects:

1. The Main Menu encompasses all Sub menu and menu items in a menu module. The Main

Menu is the first item in the Menus node in the Object Navigator. The Main Menu includes

menu items displayed on the Menu Bar.

2. Sub Menus that encompass menu items.

3. Menu items attached to a Sub Menu with their associated commands and procedures.

RDBMS Concepts and Oracle8i

28.3 Saving Compiling and Attaching a Menu Module

Saving and Compiling Menu Module:

After creating menu items as required and writing appropriate PL/SQL code, the menu module

must be saved by selecting File..Save As. A menu module i.e. menu source file is saved with an

extension of .MMB

Menu module cannot be executed by itself. Menu module must be compiled and then attached to

the form module.

Click on File..Administration..Compile File menu options to compile the menu module. When a

menu module is compiled Oracle Forms creates an executable file with the same name as the

MMB file but with an extension of MMX.

Attaching a Menu Module to a Form Module:

After saving and compiling the menu module, the compiled menu module must be attached to a

form. The steps for attaching a menu module to a form are:

1. Open the required form in the Object Navigator. Right click on the form and click on

property palette to display the Properties of the form module.

2. In Properties window, set the Menu Module property to the filename of the runtime .MMX

menu file . Once a menu is attached to a form, Oracle forms automatically loads the .MMX

menu file when the form is run.

3. Select File..Save or File..Save As to save the form module.

4. Select File..Administration..Generate to generate the form module.

519

RDBMS Concepts and Oracle8i

28.4 Checked, Enabled and Displayed Property of Menu Items

The displayed, enabled and checked property specifies the state of the menu item. The three

properties are explained below.

Checked Property:

Specifies the state of a check-box or radio-style menu item, either CHECKED or UNCHECKED.

This property is set programmatically only for the menu items with the Menu Item Type

property set to Check or Radio.

Enabled Property:

Specifies whether the menu item should be displayed as an enabled (normal) item or disabled

(grayed) item. This property is set programmatically.

Displayed Property:

Determines whether the menu item is visible or hidden at runtime. This property is set

programmatically.

Getting the Value of the Menu Property:

The state of the menu item for the above three properties can be obtained using the following

functions:

get_menu_item_property (menuitem_id, property)

get_menu_item_property (menu_name.menuitem_name, property)

The above function returns the state of the menu item given the specific property. The return

value is either TRUE or FALSE depending on the state of property (i.e. if above function is used

to check the enabled property of menu item, then it returns TRUE if the menu item is enabled

and FALSE if it is disabled.)

520

RDBMS Concepts and Oracle8i

Creating an Iconic Toolbar

Menu items created in a menu module can also be displayed as iconic buttons on a vertical or

horizontal toolbar by setting additional properties for the menu items.

Focus:

Create an iconic horizontal toolbar by altering the properties of the menu items defined in menu

module radiant.mmb.

The steps in creating an iconic toolbar are:

1. Click on File..Open to Open menu module named radiant.mmb in c:\student directory.

2. Right click on the menu module and select Menu Editor from the pop up menu. Menu

editor displays the menu items defined in the menu module.

3. The menu module displays Action menubar item with the sub menu items Save and Exit.

4. Right click on submenu item Save and select Property Palette from the pop up menu.

5. Set the Visible in Menu and Visible in Horizontal Toolbar to Yes for all the sub menu

items. Set the Icon Filename property as follows for each of the submenu items.

6. Save the Menu module by clicking on File..Save. Compile the form by clicking on

File..Administration..Compile File.

7. Open the Product form and run the form.

8. Run the form after making the changes.

521

RDBMS Concepts and Oracle8i

522

28.5 Short Summary

♠ Components of a custom menu

♣ Menu bar

♣ Menu bar items

♣ Sub menu items

♠ Creating a custom menu

♣ Creating a new menu module

♣ Adding menu items

♣ Deleting menu items

♠ Attaching a PL/SQL library to a menu module

♠ Attaching PL/SQL code to menu items

♠ Attaching a menu module to a form

♠ Checked and enabled property of menu item

28.6 Brain Storm

1. Explain the file format of menu.

2. Explain about the menu.

3. Explain the properties of menu item.

4. Explain the steps for creating iconic toolbar.

RDBMS Concepts and Oracle8i

523

Lecture 29

Reports

Objectives

After completing this lesson, you should be able to do the following

 Discuss Introduction to Reports

 Describe the Types of Reports

 Discuss about Tabular Reports

 Describe about Break Reports

 Describe about Master Detail Reports

 Describe about Matrix Report

 Discuss abut Report Triggers

RDBMS Concepts and Oracle8i

524

Coverage Plan

Lecture 29

29.1 Snap shot

29.2 Introduction to reports

29.3 Types of reports

29.4 Tabular reports

29.5 Break report

29.6 Master detail report

29.7 Matrix report

29.8 Report triggers

29.9 Short summary

29.10 Brain Storm

RDBMS Concepts and Oracle8i

525

29.1 Snap Shot

In this session we know about the features of reports tool , report data model, report layout,

and types of reports.

29.2 Introduction to Reports

Oracle Reports enables creation of a variety of reports, such as a tabular report, form report,

master/detail reports, nested matrix reports and mailing labels. Its major features include:

 Data model and layout editors in which the structure and format of the report can be

created.

 Object Navigator that permits navigation among that data and layout objects in the

report.

 Packaged functions for computations

 Support for fonts, colors, and graphics

 Conditional printing capabilities

 Fully-integrated Previewer for viewing report output.

 A unique Non-procedural Approach of Oracle Reports helps concentrate design

improvements instead of programming. It is easy-to use, fill in the form interface and

powerful defaults make developing and maintaining even the most complex reports

fast and simple.

 Oracle Reports adheres to the native look-and –feel of the host environment. Thus, it

brings about Portability with GUI Conformance. Oracle Reports can be created on bit-

mapped platforms with the guarantee of identical functionality and complete

compatibility across all systems.

RDBMS Concepts and Oracle8i

 Oracle Reports can be fully integrated with Other Oracle Products such as Oracle

Forms, Oracle Graphics and Oracle Mail. For example, graphics and charts can be

included in a report, and send output to other users via Oracle mail.

 Report’s open Architecture enables incorporating user defined routines written in

COBOL, C and most other programming languages, as well as the powerful, PL/SQL

language. Information can be presented exactly as per the report specification

provided.

Basic Concepts

 In the following few pages, the tool in general and its basic components are explained. The

are three steps to building a report with Oracle reports.

• Create a new report definition.

• Define the data model. Data along with their relationships and calculations can be

specified to produce report output.

• Specify layout (i.e.design). Default or customized report layouts can be used.

CREATING A REPORT USING ORACLE REPORTS BUILDER

A New report can be created

o By using a Report Wizard

526

RDBMS Concepts and Oracle8i

o Create a report Manually

Before a new report is created, the components of an Oracle Report must be understood.

DEFINING A DATA MODEL FOR A REPORT

To specify data for a report, a data model should be defined. A Data model is composed of

some or all of the following data definition objects.

• Queries

• Groups

• Columns

• Parameters

• Links

527

RDBMS Concepts and Oracle8i

Object navigator window for report builder.

Queries:

As in Queries are SQL SELECT statements that fetch data from the Oracle database. These

statements are fired each time the report is run

Groups:

Groups determine the hierarchy of data appearing in the report, and are primarily used to

group columns selected in the query as shown. Oracle report automatically creates a group

for each query.

Lay out editor for report builder

528

RDBMS Concepts and Oracle8i

ata Columns:

Data Columns contain the data values for a report. Default data columns, corresponding to

the table columns included in each query’s SELECT list are automatically created by Oracle

Reports. Each column is placed in the group associated with the query that selected the

column.

Formula Columns:

Formulas can be entered in Formula columns to create computed columns. Formulas can be

written using PL/SQL syntax. Formula columns names are generally preceded by CF_to

distinguish them from data columns.

Summary Columns:

Summary Columns are used for calculating summary information like sum, average etc. This

column uses a set of predefined Oracle aggregate functions that can be applied to data or

formula columns. Summary columns named are generally preceded by CS_ to distinguish

them from data columns.

Data Links:

Data links are used to establish parent-child relationships between queries and groups via

column matching.

29.3 Types of Reports

We are many types of report they are

1. Tabular report

2. Break report

3. Master/detail report

4. Matrix report

529

RDBMS Concepts and Oracle8i

The above figure specifies the types of reports.

29.4 Creating a Default Tabular Report

For ease of understanding, the tables described below are populated with around 50 records

so that pages handling either on the VDU or the printer can be understood.

The following steps are used to create the report shown in below:

• Create a new report definition.

• Connect to the database and select the data columns.

• Specify a default report layout.

• Save and run the report

• View the report output

• Create formula columns, specify a default report layout.

• Create summary columns, specify a default report layout.

• Create user parameters.

• Arrange the layout and run the report.

Creating a new Report Definition:

The screen that will be displayed, as soon as the Oracle Report is invoked is as shown in

below. The Object Navigator will display a new report definition.

Connecting to the Database:

530

RDBMS Concepts and Oracle8i

531

1. Select File, Connect menu options. The Connect dialog box will appear, prompting

you for your username and password.

2. Click in the User Name field and type your username.

3. Click in the Password field and type password and connect string.

Specifying the Data and Layout for the Report:

1. After invoking the Report Builder and connecting to the database, the next step is to

specify the data for the report. Click on Tools..Report Wizard… to start the report

wizard for a new report. Report Wizard shows a number of Tab pages to enter

information required for report creation. The different tab pages are:

• Style • Totals

• Data • Labels

• Fields • Template

2. Any report created using Report Builder requires a query via which data will be retrieved

for the report. The Data Tab allows creation of an SQL statement using Query Builder.

The SQL statement can also be entered in the multi line edit box provided in the data tab.

This select will actually get the data of the report from a base table. The completed query

property sheet will be as shown.

3. Fields Tab is used to specify the fields that must be displayed in tabular format. Select

all fields by clicking on icon. Completed screen will be as displayed in following

diagram.

4. click on Next. The Totals tab is displayed that allows creation of summary columns

using aggregate functions. This report does not include totals for the selected fields and

thus click on Next.

RDBMS Concepts and Oracle8i

532

5. The Labels for the columns can be changed using the Labels tab. Change the Label of

Sum_Quantity column to Quantity and Avg_Product _Rate to Avg. Rate. The

completed screen will be displayed as shown.

6. Report can be created from templates. There are a number of pre-determined templates

available in Oracle Reports Builder. By default reports are created using pre-

determined template named Corporate 1 as shown.

7. Reports Builder includes a Live Previewer that is used to display the report when the

Finish button is clicked, the Report Runtime is invoked as shown.

8. Reports created in Report Builder can also be displayed in the Reports Runtime

Window. Click on View..Runtime Preview. Report Runtime is displayed as shown.

9. Close Report Runtime Previewer by clicking on icon. Click on View..Data Model to

open the Data Model editor. Data model editor displays a query object named Q_1, a

group object named as G_description and data column selected by using an SQL Select

statement. The query object and the group object must be renamed appropriately.

Right click on query object and select Property Palette from the pop up menu. Set the Name

property to radiant. Similarly right click on group object and select Property Palette from the

pop up menu. Set the Name property of the group object to radiant. The completed data

model editor is shown given below.

10. Click on File..Save to save the report. Specify the report name as radiant.rdf. Specify the

path for the report file and click on OK.

The report file will be saved with the specified named.

CREATING COMPUTED COLUMNS

Computed columns calculate values based either on PL/SQL expressions or on data provided

by database columns. There are two types of computed columns that can added to a report:

Formula Columns:

Formula columns compute their values using PL/SQL expressions. Formulas can operate on

RDBMS Concepts and Oracle8i

533

multiple values per record.

Summaries Columns:

Summary columns compute their values using build in functions of Oracle Report.

Summaries operate on one value over multiple records.

Create a Formula using the Formula Column Tool:

1. A formula column can be created in the data model editor. Click on View..Data Model

to open the data model editor. The Data model editor displays a query object and a

group object that encloses a number of columns.

2. Increase the height of the group to make place for the formulae column. Select the

formula column tool in the palette and place it after the last field in the group radiant.

 A new column initially named as CF_1 is created as shown given below. Since a new

column within the radiant group is created, it will be displayed as often as the other

columns in the same group.

3. Set the following properties for the formulae column.

4. Click on the property PL/SQL formulae property. The program Unit editor is invoked

as shown given below.

5. Enter the complete formula for the sale value for each product:

 function radiant return Number is
begin

 return: avg_product_rate *: sum_quantity;

end;

The colons appear before avg_product_rate and sum_quantity because it functions as a bind

variable reference; i.e. the values of sum_quantity are substituted into the formula at runtime.

6. Click on Compile. If the function is correctly typed in, the status line reports,

“Successfully Compiled.” Otherwise the status line reports ‘Compiled with Errors,”

and the Program Unit editor points out the errors in the Compilation Messages field.

RDBMS Concepts and Oracle8i

534

7. Click on Close to close the Program Unit editor, then close the property sheet.

cf_sales_value is now listed as a column belonging to radiant. The column name

appears in italic, indicating that it is a user-created column.

8. Right click on the data model editor and select Report Wizard to invoke the report

wizard.

9. The newly created field is shown in the available fields list item as shown.

10. Select this field as shown given below.

11. Select Label tab and change the label of the formula field to Sales Value.

Create a Report Summary using Summary Column Tool:

To create a summary that computes the total sale ie. Sum of sales value for each product:

1. Invoke the Report wizard by clicking on Tools..Report Wizard. Select the Totals tab. A

list of available fields for which summary information can be specified is displayed as

shown in below diagram.

2. Select CF_sales_value from the list and click on icon. Thus indicating that it is the sum

of CF_sales_value. The completed totals tab screen in the report wizard will be

displayed as shown in given below.

3. Click on finish.

4. Open the Data model editor by clicking on View.. Data Model. The summary column

with a default name will be displayed as shown in the below diagram.

CUSTOMIZING REPORT LAYOUT

Customizing a report includes changing the default layout to improve the overall appearance

and readability of the report.

Change Layout Settings:

 Select the item to be changed and click on Format..Font. Oracle Reports displays a

RDBMS Concepts and Oracle8i

535

standard Font Setting dialog box. Specify a font name as Courier New, size as 10, bold.

 Similarly text for a report can be inserted by creating a new boiler text and entering

required Text. Specifying the required text. Arranging the fields and texts inside the

corresponding group frame, changing the format of the field, aligning the fields with

respect to each other etc. can also be done.

 Notice the Fill Color, Line Color and Text Color tools located near the bottom of the

Tool palette. The Line Color Tool is used to customize borders around layout objects.

The Fill Color tool, is used to fill layout objects with colors and patterns and, Text Color

tool, enables you to change the default text color.

Deleting Default Header and Inserting Report Header:

1. Select the text marked as ‘21st Century Products’ and press the <Delete> Key. The

default header will be deleted. Similarly select ‘Report Run on’ and ‘Date’ items and

press <Delete> key.

2. Click on Text item on the vertical tool bar i.e. button on it and place it in the header.

Enter the name of the company and the address as follows:

RADIANT

M.S.U. WING

TIRUNELVELI

3. Click on the alignment tool and change the text alignment to Left.

4. Similarly change the font to Times New Roman and font size as 10.

5. Select all the fields and labels by using <Shift> <Click> and use the down arrow key to

move the report data lower down on the page.

6. Place another text and enter the text as. Change the font to Times New Roman and font

size as 14. The completed report will be as shown in the below diagram.

7. Right click on Avg_Rate column and select Property Palette. Set the format Mask

RDBMS Concepts and Oracle8i

536

property to NNN.NN0.00 as shown in the following diagram.

29.5 Break Report

Break report is created when repeating values for a column have to be printed only once.

To create the report shown ,

• Create a new report definition.

• Define the data.

• Create a break group

• Create summary column

• Specify a default report layout.

• Save and run the report

• Arrange the layout and run the report.

CREATING A NEW REPORT DEFINITION

1. Invoke Oracle Reports Builder and connect to Oracle. Click on Tools..Report Wizard…

to create new report.

2. Select Group Left as a presentation Style as shown.

3. Enter the SQL statement as in the Data Tab. The SQL statement is as follows:

4. Group Left report requires the name of the column that must be used as a break

column. In the current example, the is repeating as the multiple items are selected for

every order. Thus the break column must be set to………..

5. empno is displayed in the group field list as shown….

6. The list of columns that must be displayed on the report is asked for. Click on to select

all the columns.

7. The totals and calculation page is displayed next. Since the totals are not required for

RDBMS Concepts and Oracle8i

537

the selected columns, click on text.

8. The Labels page is displayed next.

9. The Templates screen is then displayed. Select ‘Cyan Grid’ presentation style and click

on Finish. A default tabular report with a group break on empno is displayed…..

About Repeating Frames:

Repeating frames hold data owned by their corresponding groups. Repeating frames are

called so because repeating frames are repeated as many times as necessary to display all the

records.

ARRANGING THE LAYOUT

Deleting Default Header and Inserting Report Header:

1. Select the images displayed on the report and press <Delete> Key. The default header

objects will be deleted.

2. Click on Text item on the vertical tool bar i.e., button on it and place it in the header.

Enter the name of the company and the address as follows:

RADIANT

M.S.U. WING

TIRUNELVELI

3. Click on the alignment tool and change the text alignment to Left. Similarly change the

font to Times New Roman and font size as 10.

4. select all the fields and labels by using <Shift> <Click> and use the down arrow key to

move the report data lower down on the page.

5. Place another text item and enter the text as ‘ ‘. Change the font to Times New

Roman and font size as 14.

RDBMS Concepts and Oracle8i

538

29.6 Master/Detail Report

A simple master / detail report contains two groups of data i.e. master group and detail

group. For each master record fetched, only the related detail records are fetched.

Master / detail reports are similar to break reports in the way data is fetched. For every

master or break group, related detail records are fetched.

In addition, if the default Group Above layout style is used format a break report, the output

will look like a master/detail report as defined by Oracle Reports. The master record will be

displayed in Form-Like format and the detail records will be displayed in Tabular format.

CONCEPTS

Break reports and master / detail reports can result in similar outputs but they require

different data model objects. A break report uses one query and two or more groups, while a

master/detail report uses two queries, each of which has one group.

Relationship between the two queries must be established in a master / detail report. This

relation is set by a Data Link.

Data Link Object:

Data link object is a data model object, which joins multiple queries. For a simple

master/detail report, two queries will be linked using primary and foreign keys of the tables

from which data is selected. The Query with the primary key column i.e, the source for the

master records is called the parent Query and the Query with the foreign key column I,e. the

source for the detail records is called the Child Query.

Linking two tables via primary and foreign keys is similar to specifying a join condition.

Information in the data link object is used to join two queries. The where clause for the join is

added to the child query’s SELECT statement at run time.

Layout

Master detail report uses Group above layout style in which master records display across the

page with the labels to the left of their fields and the detail records appear below the master

RDBMS Concepts and Oracle8i

539

records in tabular format.

CREATING A MASTER/DETAIL REPORT

Reports as shown

• Create a new report definition by creating 2 queries for master and detail tables and

link them.

• Create formula and summary layout.

• Specify a default report layout.

• Arrange the layout

• Save and run the report

CREATING THE REPORT DEFINITION

Master detail report can be created using multiple queries and selecting ‘Group Above’

presentation style.

Creating a Master Detail Report using Multiple Queries:

A master detail report can be created using two queries. The first query is used to extract

data for the master section and the second query is used to extract data for the detail section.

29.7 Matrix Report

Introduction to matrix report

A matrix report is a summary report that presents the desired data with headings across the

top and the left side. Matrix report data is displayed at the intersection of the top and left

heading. The totals are displayed across the bottom and rights side. A matrix report is also

referred to a ‘CROSS-TAB report.

What is matrix report?

A matrix report is a cross tabulation of four sets of data:

1. one set of data is displayed across the page I,e values are placed one besides the other.

RDBMS Concepts and Oracle8i

2. one set of data is displayed down the page i.e values are placed one below the other.

3. one set of data is the cross product, which creates data cells at the intersection of the

across and down data.

4. onset of data is displayed as the filler of the cells I,.e the values are used to fill the cells

created in step3.

Types of matrix reports

 Different types if matrix reports can be created using Oracle Reports. The four general types

of matrix reports are

• simple matrix

• Nested matrix

• Matrix Break

• Multi-Query matrix with break

Before discussing the particulars of matrix building, the objects required in the data model

editor and the objects required in the layout editor must be known.

540

RDBMS Concepts and Oracle8i

541

Objects in data model:

In building matrix data model, the following must be taken into consideration:

1. Number of queries

2. Group structure

3. Summary settings

Number of Queries:

Two types of query structures can be used for a matrix data model.

One-Query Matrix

A matrix report can be created from a single query where a single SQL Select statement is

used to fetch data from the database. Reports Builder toll then groups the data fetched from

the database to construct a matrix report.

Multi-Query Matrix

Multi-query data model can be considered because it results into simple queries as compared

to one query data model. In addition, a multi-query data model is required for nested matrix

reports.

Groups Structure :

Matrix reports are built with four or more groups:

Two or more dimension groups:

In the layout, the information in at least one groups goes across the page, and the

information in at least one group goes down the page, forming a grid. The groups that

provide the data to be displayed across or down the page are called Dimension Groups

The information in Dimension groups is sometimes referred to as Matrix labels as they

provide column and row labels for the matrix. Dimension groups are contained within the

RDBMS Concepts and Oracle8i

542

cross product group.

One or more cross product groups:

In the layout, a Cross Product Group is represented by the intersection of the across and

down dimension groups. Thus the cross product group shows all possible combinations of

the values of the across and down dimension groups.

When the report is run, it expands, and each instance of data intersection becomes a separate

cell.

One cell or filler groups

 The Cell Group contains data that is used to fill the cells created by the cross product group.

When the report is run, these values appear in the appropriate cells.

Matrix Layout:

A matrix layout model must consist of the following layout objects:

1. At least two repeating frames, one with a Print Direction set as Down and own with a

Print Direction set to Across.

2. Several group header, and footer (if summaries are included) frames.

3. A matrix object created for the cross product group that includes cells of the matrix.

4. Boilerplate for each column and row of values, as well as for summaries.

Matrix / Cross Product Object

Matrix object defines the intersection of at least two repeating frames. The repeating frames

are the dimensions of the matrix and the matrix object contains at least one field that holds

the filler or values of the cell group.

One matrix object must be created for each pair of intersecting repeating frames in the layout.

RDBMS Concepts and Oracle8i

543

One of the repeating frames must have a Print Direction of Down and the other must have a

Print Direction of Across in order to form a matrix. Matrix object can be created using cross

product button on the toolbar.

Matrix reports are different from tabular reports because the number of columns is not

known in advance; I,e the number of columns in the report is not determined by the number

of columns specified in the SELECT statement plus the columns created. The number of

columns in the report depends on the number of values contained in the columns providing

the horizontal labels.

The Solution :

• Create a new report

• Create a query

• Create Groups

• Create Default Layout

• Create Summary columns.

• Add zeroes in place of non-existent values.

• Create user parameter.

29.8 Report Triggers

To extend report writing capabilities , Oracle Reports Builder enables the use of PL/SQL code

blocks. If conditional logic in required in a report PL/SQL constructs can be used to perform

the job.

Examples

If a sales value is below the specified target, then such sales values can be displayed with a

different text color. This helps to draw attention to these values.

PL/SQL code blocks can be used in different types of triggers available in Oracle Reports:

1. Formula Triggers

2. Formula Triggers

3. Action Triggers

4. Validation Triggers

RDBMS Concepts and Oracle8i

544

5. Report triggers

6. Groups Filters

Each of them are explained below:

Formula triggers:

Formula triggers are PL/SQL functions that populate columns of type formula. A pl/sql

function is required for any column of type formula. The data type of the formula column

determines the return data type for the formula trigger. An example of a formula trigger is as

follows:

 Function radiant Return Number is

 Begin

 Return :avg_product_rate * :sum_quantity;

End;

Formula triggers are created as the name of the formula column followed by the reserve word

formula. The value returned by the formula trigger is displayed in the report field connected

to the formula column.

Format triggers:

Format triggers are PL/SQL functions executed before the object is formatted. These triggers

can be used to dynamically change the formatting attributes(e.g. font, font weight etc.) of any

object on the report. They are also used to conditionally print or not print a report column

value.

Format triggers return Boolean values TRUE or FALSE. If the return value for the format

trigger is false, the value is not displayed in the report.

Action Triggers:

Action triggers are PL/SQL procedures executed when a button is selected in the previewer.

This trigger can be used to dynamically call another report or execute any other PL?SQL. it

can also be used to execute a multimedia file.

RDBMS Concepts and Oracle8i

545

Action triggers are used to perform user-defined action and these triggers do not return any

value.

Validation Triggers:

Validation triggers are PL/SQL functions that are executed when a parameter value is

entered and the cursor moves to the next parameter. These triggers are used to validate

parameter values.

Validation triggers return Boolean value TRUE or FALSE. If the return value is TRUE, the

parameter is treated as validated. If the value is FALSE then a default error message is

displayed and an exception is raised.

Rules for the validation triggers.

Restrictions defined for validation triggers. These are:

The PL/SQL code in a validation trigger can be a maximum of 32k characters.

In a validation trigger, the values of oracle reports parameters can read or values can be

assigned to them. Report column values cannot be read nor can values be assigned to report

columns in a validation trigger.

Report triggers:

Report triggers enable execution of PL/SQL functions at specific times during the execution

and formatting of a report. Customization of formats, initialization tasks, accessing database

etc can be done using the conditional processing capabilities of PL/SQL in these triggers.

Oracle reports have five global report triggers. The trigger names indicate at what point the

trigger fires:

1. Before parameter form fires before the runtime parameter form is displayed. From this

trigger, the values of parameters, PL/SQL global variables and report-level columns

can be accessed and manipulated if required.

RDBMS Concepts and Oracle8i

546

2. After parameter form fires after the runtime parameter form is displayed. From this

trigger, parameter values can be accessed and their values can be validated. This trigger

can be used to change parameter values or, if an error occurs, return to the runtime

parameter form.

3. Before report fires before the report is executed but after queries are parsed and data is

fetched.

4. Between pages fires before each page of the report is formatted, except the very first

page. This trigger can be used for customized page formatting.

5. After report fires after the report previewer is exited, or after report output is sent to a

specified destination, such as a file or a printer. This trigger can be used to clean up any

initial processing that was done. For example if temporary tables are created during

report execution, such tables can be deleted in the After report trigger.

Which trigger to use:

As a general rule, any processing that will effect the data retrieved by the report should be

performed in the before parameter form or after parameter form triggers. These are the two

report triggers that fire before any SQL statement is pared or data is fetched.

Any processing that will not effect the data retrieved by the report can be performed in the

other triggers.

Return values for the report triggers:

Report triggers return Boolean value TRUE or FALSE. The impact of the return value varies

based on the type of report trigger.

Report trigger type Impact of the Return Value

Before Parameter Form

If the return value is FALSE, an error message is displayed

and then the focus returns to the place from where the report

was executed.

After parameter form If the return value is FALSE, the focus returns to the runtime

RDBMS Concepts and Oracle8i

parameter form. If the parameter form is not displayed then

the focus returns to place from where the report was executed.

Before Report If the return value is FALSE, an error message is displayed

and then returns to the place from which the report was

executed.

Between pages If the return value is FALSE, an error message is displayed

and then the focus returns to the place from where the report

was executed. If the trigger returns FALSE on the last page,

nothing happens because the report formatting is complete.

The between page trigger does not fire before the first page is

displayed. An error message is displayed when the focus

moves to the second page if the report consists of two or more

pages.

After report If the return value is FALSE, if does not affect the report. A

message can be displayed to indicate that the report displayed

is probably incorrect.

The order of report trigger execution is as follows:

BEFORE PARAMETER FORM TRIGGER is fired

Runtime parameter form appears

AFTER PARAMETER FORM TRIGGER is fired

Report is “complied.”

Before Report trigger is fired

Queries are parsed and data is fetched

547

RDBMS Concepts and Oracle8i

 The report is executed

Between Page trigger fires for each page

Report is closed

After Report trigger is fired

29.9 Short Summary

 Define a data model for a report

♣ Queries

♣ Groups

♣ Data links

 Specify the layout for a report

♣ Report layout formats

♣ Frames

♣ Repeating frames

♣ Fields

 Creating a default tabular report

♣ Creating a new report definition

♣ Connecting to the database

♣ Specifying data and layout for the reprt

♣ Creating formula columns

♣ Creating summary columns

548

RDBMS Concepts and Oracle8i

549

♣ Customizing report layout

 Specifying report definition for a break report

♠ Selecting break fields for a break report

♠ Creating a master/detail report

 Creating a master/ detail report using multiple quires

♣ Creating a data link object

♣ Creating formula columns

 Types of matrix reports

♣ Single query matrix report

♣ Multiple query matrix report

 Matrix group structure

♣ Dimension groups

♣ Cross product groups

♣ Filler groups

 Types of report triggers

♠ Format triggers

♠ Action triggers

♠ Validation triggers

♠ Group filter triggers

29.10 Brain Storm

1. What is report?

2. Explain the types of report

3. What is a trigger?

4. Explain the types of triggers?

5. Explain the different types of matrix report?

RDBMS Concepts and Oracle 8i

550

Lecture 30

Graphics

Objectives

After completing this lesson, you should be able to do the following

 Discuss about Introduction to Graphics

 Describe about Using Graphics Builder

 Describe creating a graph

RDBMS Concepts and Oracle 8i

551

Coverage Plan

Lecture 30

30.1 Snap shot

30.2 Introduction to graphics

30.3 Using graphics builder

30.4 Creating a graph

30.5 Short summary

30.6 Brain Storm

RDBMS Concepts and Oracle 8i

552

30.1 Snap Shot

In this session we deal the following

♠ Creating a display modules.

♠ Graph presentation styles.

♠ Chart template.

♠ Passing parameters to a display module.

♠ Calling display module from forms.

♠ About PL/SQL library.

30.2 Introduction to Graphics

A graph is a form of information representation, which can visually display a lot of

information in a compact form. A graph is a mechanism that allows organization staff to

visually analyze information on-line. Using graphs data can be retrieved from a variety of

sources and displayed, using charts, line drawing, bit-mapped images etc.

Working with Charts:

Graphs comprise of the following components:

 Displays

 Layout

 Queries

 Chart Properties

 Templates

Display:

The primary object of Graphics Builder is the Display. A display module is nothing but a

collection of objects such as Layout, Template, Queries and Triggers.

Layout:

RDBMS Concepts and Oracle 8i

The Layout editor is the main work area in Oracle Graphics Builder. It is where the layout of

a display is designed, is designed, by creating and modifying graphical objects (lines,

polygons, rectangles, text, etc.). Every display contains exactly one layout, and every layout

belongs to exactly one display. The contents of the layout are shown when the Display is

executed. The information presented can be viewed or the display can be manipulated by

using a mouse or keyboard.

Queries:

Query is a SQL SELECT statement of file that Oracle Graphics needs in order to retrieve data

for a chart. A chart can be associated with only one query at a time. When a chart is drawn,

the data from the current query is used.

Chart Properties:

Chart properties define options for the chart as a whole, including its associated chart

template and query. Chart properties are accessible through the Chart property sheet, which

is a multi tab page object. The tab pages are organized as follows:

Chart : Includes the chart’s Name, Title, Chart Type and Template.

Data : Includes query related properties such as a Query Filter Function and the range of

data to plot.

553

RDBMS Concepts and Oracle 8i

Categories :Includes the chart categories and any sub-categories to plot in the chart. Category

data is plotted at fixed intervals. Category data is not considered to be mathematically related

and is usually plotted along what is called the Discrete axis.(ie., X axis)

Values : Includes the chart values. Value dependent data generally starts at one value and

continues until another value. Value data is considered to be mathematically related and is

usually plotted along what is called the Continuous axis.(i.e. Y axis)

PL/SQL : Includes any mouse events and associated procedures for the chart.

Chart Types:

The following list describes the types of charts available that can be created along with their

usage.

Column : Column Charts type is used to compare sets of data ranges vertically. For example,

a Column Chart can be used to show the quarterly sales revenue generated by each sales

representative.

Bar : Bar Chart type is used to compare sets of data ranges horizontally. For example, a bar

chart can be used to compare monthly sales.

Line : Line chart type is used to show vertical changes for a specific set of data. For example,

a line chart can be used to guage daily or weekly changes in a stock’s value.

554

RDBMS Concepts and Oracle 8i

555

Mixed : Mixed chart combines multiple plot types such as column and line. For example, a

mixed chart can be used to show daily sales revenue, with a line plot type to provide a

summary view of the data.

Double-Y : Double Y chart type provides two independent Y-axes on which to plot data.

Each Y-axis can show a different range of values. For example, one axis can be used to

represent revenue and the second axis can be used to represent income, for a specific month

or year.

Pie : Pie Charts type is used to compare the ratios or percentages of parts of a whole. For

example, a pie chart can be used to compare annual revenue by department or quarter.

Table : Table Chart type is used to show data in a table format. For example, a table chart can

be used to show an Employee Organization Chart.

Scatter : Scatter chart type is used to show data along two-value axis. Scatter charts are well

suited for showing standard deviation. For example, a scatter chart can be used to plot the

target and the actual sales for each salesmen. If there is a correlation between the two sets of

data, the points will be grouped together closely. One or more points well outside the group

could indicate a disparity.

High-low : HighLow chart type is used to show fields that correspond to high, low, and close

(ie.,stock prices). For each row in a query, a high-low range is plotted on the chart.

Gantt : Gantt chart type is used to show sets of project data over a given amount of time.

Gantt charts are generally used to show project milestone timelines.

Chart Templates:

Template is the format of a chart and its properties. A chart can be associated with only one

chart template at a time. Each chart template can be associated with one or more field

templates, which define the properties of the individual fields, such as bars, columns, pie

slices, or lines.

Using a single chart template, multiple charts with same set of basic characteristics such as

grid line settings or tick label rotation etc. can be created. For example, instead of specifying

the properties for each chart individually, a single chart template can be created and

RDBMS Concepts and Oracle 8i

associated it with multiple queries. The Chart Template Editor is used to work with chart

templates.

30.3 Using Graphics Builder

Tools Available with the Graphics Builder:

The tools available with the Graphics Builder must be looked at before attempting to create a

chart so that chart creation is made simpler. These are:

1. Object Navigator

2. Layout Editor

3. PL/SQL editor

Object Navigator:

Queries and templates are constituent parts of a Display. The Object Navigator allows

navigation through the hierarchy of objects.

556

RDBMS Concepts and Oracle 8i

Layout Editor:

The developed charts will be displayed in the layout editor. The sizing, positioning and

alignment of the chart objects on the screen are done through this tool.

PL/SQL Editor:

More often than not, there is a need to perform tasks, which are specific to an application.

Such tasks can be handled by writing code to customize application processing and to meet

these specific requirements. The PL/SQL Editor gives an interface to define code blocks

called Trigger Code for appropriate trigger events.

30.4 Creating a Graph

To design a simple Line graph for sales order transactions. The Graph earning for the year

grouped by month.

The table definitions are as follows:

Table Name : radiant (Master)

Desctiption : Use to store information about employees salary.

Table Name : Ray

Description : Use to store information about projects.

557

RDBMS Concepts and Oracle 8i

558

The Solution:

1. Invoke Oracle Graphics Builder Tool. When the Graphics Builder Tool is invoked, a new

display with a default name disp1 is created and opened in the Object Navigator window

as shown in the below diagram.

2. Connect to the database by clikcking on File and Connect.

Creating a Query for the Graph:

1. From the Menu bar select Chart..Create Chart…Since a graph is created using a query, a

Chart Genie – New Query dialog box is displayed.

This dialog box includes two tab pages i.e. Query and Data. The Query tab includes query

properties like Query Name, Query Type.

Query Name :The default name given to the newly created query is query0.

Query Type :The Query Type property determines the data source for a graph. Different

options available for the Query Type are:

• SQL Statement

• SYLK File or a WKS File – These are spreadsheet file formats.

• PRN is a printer file.

• External SQL File.

The default Query Type is SQL Statement and thus an edit box to enter the SQL statement is

available.

1. Change the name of the query object to radiant.

2. Enter the SQL Statement in the SQL Statement option.

 Select * from radiant;

RDBMS Concepts and Oracle 8i

559

3. Check the data. If the displayed data is correct click on OK. A Chart Properties dialog box

is displayed. Enter the Name, Title for the chart and select the required Type of Graph

and its Subtype as shown in following diagram.

4. Click on Apply and then OK button to accept the values. The completed graph will be

displayed as shown in the following diagram

5. Click on File..Save. A display can be saved in the database or as a file. Thus, a

confirmation to save the file as the ‘File System’ is asked for. Click on OK. Save As dialog

box is displayed. Select appropriate drive and directory and enter the file name as

radiant.odg as shown in the following diagram.

6. Click on File..Run to execute the display. The layout editor will be replaced with the

Graphics Debugger window. The values displayed for the Categories axis are displayed

vertically. Click on File..Exit Runtime to return to the layout editor.

To change to horizontal display, double click on the Category values in the layout editor. The

Axis Properties dialog box is displayed.

Change the Tick Label Rotation property to horizontal by clicking on the appropriate radio

button.

PASSING PARAMETERS IN ORACLE GRAPHICS

The graph created so far is static. It does not have the ability to accept values and display a

graph accordingly. To make graphs dynamic, it would be essential to define parameters that

accept input values and pass the values to the graph.

30.5 Short Summary

♠ Creating a display module

♣ Creating a display module in graphics builder

♣ Using graphics builder tool

♠ Graph presentation styles

RDBMS Concepts and Oracle 8i

560

♣ Graph types

♣ Graph sub types

♣ GRAPH CATEGORIES AXES

♣ Graph values axis

♠ Chart template

♣ Changing graph presentation by using a template

♠ Passing parameters to a display module

♣ Creating a user parameter

♣ Setting properties of a user parameter

♣ Using user parameter in graph query

♠ Calling display module from forms

♣ Need to call a display module from a form

♣ Passing parameters to the called display module

♣ Use of PL/SQL library

♣ Calling display module using open() procedure

30.6 Brain Storm

1. What is graph?

2. Why we need graphics builder

3. How to create graph explain.

4. Explain the types of graph

5. What are the properties we used in graphics.

Syllabus

561

MANONMANIAM SUNDARANAR UNIVERSITY
Centre for Information Technology and Engineering

Tirunelveli – 627 012

Syllabus for M. Sc. (IT&EC) / MIT

2.1 RDBMS Concepts and Oracle 8i

Lecture 1 Relational Database management system definitions - Basic concepts – Data – Database
-Database user – Database system - Database Modeling.

Lecture 2

Entity relationship model – entity – attributes – Relationships - mapping cardinalities.

Lecture 3

RDBMS concepts - Object based data models – OLTP – DSS – Transaction - large
Database management control - Data concurrency – Data Consistency – Data Integrity.

Lecture 4

Normalization – Redundancy and Inconsistent dependency – first normal form –
second normal form – Third normal form - Denormalization.

Lecture 5

Codd’s rule – Data Integrity – Keys.

Lecture 6

Client server architecture – clients – servers – Types of servers – multithreaded server
architecture – advantages of client/server computing.

Lecture 7

Front ends – open clients - ODBC support – Character based clients – GUI based
clients.

Lecture 8

Introduction to SQL - Generation of Languages - SQL - SQL Command classification -
Data types - Create, view, manipulate data.

Lecture 9

Data integrity - Adding Constraints

Lecture 10

Operators and functions - Expressions - functions - Scalar functions - Aggregate
functions

Lecture 11 Joins and Sub queries - joins tables - sub queries - Correlated sub query - Inline queries
- pseudo columns

Lecture 12

Database objects - privileges - Database objects - synonyms – sequences Understanding
Database structure - Access Methodologies.

Lecture 13 Introduction to PL/SQL - PL/SQL Architecture - Declares Variables - Control
structures - iteration control

Lecture 14

Understanding cursors - types of cursors - cursor variables - eg. For using constrained
cursors.

Lecture 15

Errors –Exceptions - User-Defined Exceptions – Unhandled Exceptions

Lecture 16

Introduction to Subprograms - Procedures to Parameters - Functions of Notations -
Procedures Vs Functions.

Syllabus

562

Lecture 17 Packages - Specification - Package body - Overloading of Package

Lecture 18

Triggers-parts of triggers-types of triggers-creating triggers-cascading triggers-
mutating and constraining tables - enabling and disabling triggers

Lecture 19

Oops and object concepts - why objects - Oracle supported Data types - Collection
types - Object views - member functions - using order method.

Lecture 20

Introduction to DBA - Open cursor - Execute - Oracle DBA.

Lecture 21

Java strategies - JDBC - Java with SQL - Java virtual machine - Java stored procedures.

Lecture 22

Loading Java - Drop Java utilities - registering Java - Oracle Internet file system.

Lecture 23

Introduction to forms – using forms builder – form wizards – creation of forms.

Lecture 24

Property class – visual attributes – library – alerts – object libraries – editors.

Lecture 25

Master detail form – creation of master detail form – triggers – validations

Lecture 26 Working with LOV objects – using multiple canvases – types of canvas – Object groups
– Parameters – record groups.

Lecture 27

Stacked canvas – tab canvas– Horizontal toolbar canvas– List item

Lecture 28

Using menu – saving compiling and attaching a menu module – checked, enabled
menu items.

Lecture 29

Introduction to reports – types of reports – tabular reports – break report – master
detail report – matrix report – report triggers.

Lecture 30

Introduction to graphics – using graphics builder – creating a graph.

 Best of Luck

	contents.pdf
	Lecture 3 30
	Lecture 4 38
	
	Lecture 5 51
	 Lecture 6 61
	Lecture 7 77
	Lecture 8 83
	Lecture 9 115
	Lecture 10 134
	Lecture 12 198
	Lecture 13 224
	Lecture 14 249
	Lecture 15 276
	Lecture 16 295
	
	Lecture 17 311
	Lecture 18 330
	Lecture 19 348
	Lecture 20 380
	Lecture 21 386
	
	Lecture 22 398
	Lecture 23 413
	Lecture 24 433
	
	Lecture 25 454
	
	Lecture 26 475
	Lecture 27 500
	Lecture 28 516
	Lecture 29 523
	Lecture 30 550

	Lecture 1.pdf
	Lecture 1.doc
	
	
	
	

	Lecture 2.pdf
	 Symbol Meaning
	Design Implemented in SQL Server Examples
	Component

	Lecture 3.pdf
	Lecture 4.pdf
	Lecture 5.pdf
	

	Lecture 6.pdf
	
	Figure 2 Multi-User Database environment with Client-Server Architecture
	
	
	
	 M/C III (LOCATION
	
	Figure 4 Wide Area Network

	Lecture 7.pdf
	Lecture 8.pdf
	Lecture 9.pdf
	 Example
	CUST_MASTER
	ORDER_MASTER
	Example
	 Example

	Lecture 10.pdf
	
	
	Operator Purpose Example
	Table X
	Table Y
	Itemcode

	
	1 Powders
	2 Soaps
	3 Creams
	4 Pencils
	4 Pens
	 ITEMCODE NAME

	1 Powders
	4 Pens
	
	 ITEMCODE NAME
	 ITEMCODE NAME

	1 Powders
	All set operators have equal precedence. If a SQL statement contains multiple sets of operators, ORACLE evaluates them from left to right. If the order is to be changed, parentheses has to be used to explicitly specify another order. These querying tables can contain different structures. But the type of the data in the tables must match.
	Functions are similar to an operator. A function manipulates data items and returns a result. Functions differ from operators in the format in which they appear with arguments. Functions can be broadly classified into two types.
	CEIL
	Syntax
	POWER
	Example
	ROUND

	 Syntax
	INSTRB
	LENGTH

	 Syntax
	SUBSTRB
	NEXT_DAY
	
	Example
	Example

	 Output
	
	Examples
	LEAST
	UID

	 USER
	
	SYSDATE
	DECODE
	Example
	Example
	
	Example
	Example
	Example

	Lecture 11.pdf
	ENAME DNAME
	
	 Example 11.11
	DEPTNO DNAME ROWNUM
	DEPTNO DNAME ROWNUM
	 Example 11.12

	ROWID ENAME
	

	Lecture 12.pdf
	Lecture 12
	
	 Example
	Table 12-1: Bitmap Index Example
	Table 12-2: Sample Bitmap

	Lecture 13.pdf
	 Example 7.1
	Example 7.2
	 Example 7.3
	 Example 7.13

	Lecture 14.pdf
	Lecture 15.pdf
	Lecture 16.pdf
	 Specification
	
	Example
	IN
	OUT
	IN OUT
	Used to calculate Values
	

	Lecture 17.pdf
	Lecture 18.pdf
	 Example
	Statement
	Insert
	Null
	Example
	Example

	Lecture 19.pdf
	
	 OOP concepts
	Example
	Example
	Example
	

	
	In an object table, each row is a row object. An object table differs from a normal relational table in the following ways :

	
	REFs
	Example
	
	Example
	Example
	Example

	Lecture 20.pdf
	
	Example 14.1

	Lecture 21.pdf
	Lecture 22.pdf
	Lecture 23.pdf
	Lecture 24.pdf
	Description
	Icon
	Description

	Lecture 25.pdf
	Property
	Use
	Non-Isolated
	Data Blocks When you build database applications with From Builder, many of the blocks will be data blocks. A data block is associated with a specific database table (or view), a stored procedure, a FORM clause query, or transactional triggers.
	Master Versus Detail Blocks

	Single-Record Versus Multirecord Blocks
	Creating Data Blocks with Relationships
	Master-Detail Relationship
	A Detail Block Can Be a Master
	A Master Block Can Have More Details
	
	
	
	New Relation
	Trigger Name

	Trigger Name
	Action
	Trigger Name
	Mouse Action
	Sequence
	Trigger Name
	Remarks
	Sequence
	Trigger Name
	Remarks
	The Validation Unit
	When-Validate-Item Trigger
	Example
	When-Validate-Record Trigger
	Example
	 Validation occurs at three levels

	Lecture 26.pdf
	LOVs
	Editors
	With a text editor enabled the user can view multiple lines of a text item Simultaneously, search and replace text in it and generally modify the value of an item from this separate window.
	How to Use an Editor at Run Time
	Record Groups

	Creating an LOV
	Element

	The Query Text
	Query Text Example
	Query Text Example
	LOV Default Functionality
	
	Setting LOV Properties
	Property
	Function
	Title

	The Column Mapping Properties
	Column Mapping Element
	Description

	Windows and Content Canvases
	
	What is a Window?
	What is a Canvas?
	What is a Viewport?
	What is a Content Canvas ?
	Displaying a Form Module in Multiple Windows
	What Are GUI Hints?
	How to Create a New Window
	
	Displaying a Form Module on Multiple Layouts
	Creating a New Content Canvas implicitly
	 Creating a New Content Canvas Explicitly

	Function
	Physical Property
	Function
	 How to create a new content canvas

	To create an object groups
	Example:

	TYPES OF RECORD GROUPS
	Non-query A non-query record group is a group that Record Group does not have an associated query, but whose structure and values can be modified programmatically at runtime.

	Lecture 27.pdf
	Canvases Overview
	 Determining the Size of s Stacked Canvas
	Uses and Benefits of stacked canvases
	 Creating a stacked canvas
	Pysical Property
	Function
	How to Create a Stacked Canvas in the Object Navigator
	How to create a stacked canvas in the layout editor
	Displaying stacked canvases in the layout editor

	Tab Page Property
	Function
	Label

	Item Property
	Function
	Canvas

	How to Create a Tab Canvas in the Object Navigator
	How to Create a Tab Canvas in the Layout Editor
	Window property
	Function
	Form Module Property
	Function
	How to create a toolbar canvas
	
	The three List Item Styles
	
	List Style
	Description
	Poplist
	Tlist
	Combo box

	
	Uses and Benefits of List Items
	Setting the Value for a List item
	Creating a List Item

	Lecture 28.pdf
	
	Using a Custom Menu
	
	Creating an Iconic Toolbar
	 Creating a custom menu
	 Deleting menu items

	Lecture 29.pdf
	CREATING A REPORT USING ORACLE REPORTS BUILDER
	
	A New report can be created

	Lecture 30.pdf
	Syllabus.pdf
	
	Introduction to SQL - Generation of Languages - SQL - SQL Command classification - Data types - Create, view, manipulate data.
	
	Lecture 15

